diff options
Diffstat (limited to 'src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c')
-rw-r--r-- | src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c | 1067 |
1 files changed, 1067 insertions, 0 deletions
diff --git a/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c new file mode 100644 index 0000000000..53a0e722cf --- /dev/null +++ b/src/gallium/auxiliary/rtasm/rtasm_ppc_spe.c @@ -0,0 +1,1067 @@ +/* + * (C) Copyright IBM Corporation 2008 + * All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * on the rights to use, copy, modify, merge, publish, distribute, sub + * license, and/or sell copies of the Software, and to permit persons to whom + * the Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL + * AUTHORS, COPYRIGHT HOLDERS, AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, + * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR + * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE + * USE OR OTHER DEALINGS IN THE SOFTWARE. + */ + +/** + * \file + * Real-time assembly generation interface for Cell B.E. SPEs. + * + * \author Ian Romanick <idr@us.ibm.com> + * \author Brian Paul + */ + + +#include <stdio.h> +#include "pipe/p_compiler.h" +#include "util/u_memory.h" +#include "rtasm_ppc_spe.h" + + +#ifdef GALLIUM_CELL +/** + * SPE instruction types + * + * There are 6 primary instruction encodings used on the Cell's SPEs. Each of + * the following unions encodes one type. + * + * \bug + * If, at some point, we start generating SPE code from a little-endian host + * these unions will not work. + */ +/*@{*/ +/** + * Encode one output register with two input registers + */ +union spe_inst_RR { + uint32_t bits; + struct { + unsigned op:11; + unsigned rB:7; + unsigned rA:7; + unsigned rT:7; + } inst; +}; + + +/** + * Encode one output register with three input registers + */ +union spe_inst_RRR { + uint32_t bits; + struct { + unsigned op:4; + unsigned rT:7; + unsigned rB:7; + unsigned rA:7; + unsigned rC:7; + } inst; +}; + + +/** + * Encode one output register with one input reg. and a 7-bit signed immed + */ +union spe_inst_RI7 { + uint32_t bits; + struct { + unsigned op:11; + unsigned i7:7; + unsigned rA:7; + unsigned rT:7; + } inst; +}; + + +/** + * Encode one output register with one input reg. and an 8-bit signed immed + */ +union spe_inst_RI8 { + uint32_t bits; + struct { + unsigned op:10; + unsigned i8:8; + unsigned rA:7; + unsigned rT:7; + } inst; +}; + + +/** + * Encode one output register with one input reg. and a 10-bit signed immed + */ +union spe_inst_RI10 { + uint32_t bits; + struct { + unsigned op:8; + unsigned i10:10; + unsigned rA:7; + unsigned rT:7; + } inst; +}; + + +/** + * Encode one output register with a 16-bit signed immediate + */ +union spe_inst_RI16 { + uint32_t bits; + struct { + unsigned op:9; + unsigned i16:16; + unsigned rT:7; + } inst; +}; + + +/** + * Encode one output register with a 18-bit signed immediate + */ +union spe_inst_RI18 { + uint32_t bits; + struct { + unsigned op:7; + unsigned i18:18; + unsigned rT:7; + } inst; +}; +/*@}*/ + + +static void +indent(const struct spe_function *p) +{ + int i; + for (i = 0; i < p->indent; i++) { + putchar(' '); + } +} + + +static const char * +rem_prefix(const char *longname) +{ + return longname + 4; +} + + +static const char * +reg_name(int reg) +{ + switch (reg) { + case SPE_REG_SP: + return "$sp"; + case SPE_REG_RA: + return "$lr"; + default: + { + /* cycle through four buffers to handle multiple calls per printf */ + static char buf[4][10]; + static int b = 0; + b = (b + 1) % 4; + sprintf(buf[b], "$%d", reg); + return buf[b]; + } + } +} + + +static void +emit_instruction(struct spe_function *p, uint32_t inst_bits) +{ + if (!p->store) + return; /* out of memory, drop the instruction */ + + if (p->num_inst == p->max_inst) { + /* allocate larger buffer */ + uint32_t *newbuf; + p->max_inst *= 2; /* 2x larger */ + newbuf = align_malloc(p->max_inst * SPE_INST_SIZE, 16); + if (newbuf) { + memcpy(newbuf, p->store, p->num_inst * SPE_INST_SIZE); + } + align_free(p->store); + p->store = newbuf; + if (!p->store) { + /* out of memory */ + p->num_inst = 0; + return; + } + } + + p->store[p->num_inst++] = inst_bits; +} + + + +static void emit_RR(struct spe_function *p, unsigned op, int rT, + int rA, int rB, const char *name) +{ + union spe_inst_RR inst; + inst.inst.op = op; + inst.inst.rB = rB; + inst.inst.rA = rA; + inst.inst.rT = rT; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, %s\n", + rem_prefix(name), reg_name(rT), reg_name(rA), reg_name(rB)); + } +} + + +static void emit_RRR(struct spe_function *p, unsigned op, int rT, + int rA, int rB, int rC, const char *name) +{ + union spe_inst_RRR inst; + inst.inst.op = op; + inst.inst.rT = rT; + inst.inst.rB = rB; + inst.inst.rA = rA; + inst.inst.rC = rC; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, %s, %s\n", rem_prefix(name), reg_name(rT), + reg_name(rA), reg_name(rB), reg_name(rC)); + } +} + + +static void emit_RI7(struct spe_function *p, unsigned op, int rT, + int rA, int imm, const char *name) +{ + union spe_inst_RI7 inst; + inst.inst.op = op; + inst.inst.i7 = imm; + inst.inst.rA = rA; + inst.inst.rT = rT; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, 0x%x\n", + rem_prefix(name), reg_name(rT), reg_name(rA), imm); + } +} + + + +static void emit_RI8(struct spe_function *p, unsigned op, int rT, + int rA, int imm, const char *name) +{ + union spe_inst_RI8 inst; + inst.inst.op = op; + inst.inst.i8 = imm; + inst.inst.rA = rA; + inst.inst.rT = rT; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, 0x%x\n", + rem_prefix(name), reg_name(rT), reg_name(rA), imm); + } +} + + + +static void emit_RI10(struct spe_function *p, unsigned op, int rT, + int rA, int imm, const char *name) +{ + union spe_inst_RI10 inst; + inst.inst.op = op; + inst.inst.i10 = imm; + inst.inst.rA = rA; + inst.inst.rT = rT; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, %s, 0x%x\n", + rem_prefix(name), reg_name(rT), reg_name(rA), imm); + } +} + + +/** As above, but do range checking on signed immediate value */ +static void emit_RI10s(struct spe_function *p, unsigned op, int rT, + int rA, int imm, const char *name) +{ + assert(imm <= 511); + assert(imm >= -512); + emit_RI10(p, op, rT, rA, imm, name); +} + + +static void emit_RI16(struct spe_function *p, unsigned op, int rT, + int imm, const char *name) +{ + union spe_inst_RI16 inst; + inst.inst.op = op; + inst.inst.i16 = imm; + inst.inst.rT = rT; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm); + } +} + + +static void emit_RI18(struct spe_function *p, unsigned op, int rT, + int imm, const char *name) +{ + union spe_inst_RI18 inst; + inst.inst.op = op; + inst.inst.i18 = imm; + inst.inst.rT = rT; + emit_instruction(p, inst.bits); + if (p->print) { + indent(p); + printf("%s\t%s, 0x%x\n", rem_prefix(name), reg_name(rT), imm); + } +} + + +#define EMIT(_name, _op) \ +void _name (struct spe_function *p) \ +{ \ + emit_RR(p, _op, 0, 0, 0, __FUNCTION__); \ +} + +#define EMIT_(_name, _op) \ +void _name (struct spe_function *p, int rT) \ +{ \ + emit_RR(p, _op, rT, 0, 0, __FUNCTION__); \ +} + +#define EMIT_R(_name, _op) \ +void _name (struct spe_function *p, int rT, int rA) \ +{ \ + emit_RR(p, _op, rT, rA, 0, __FUNCTION__); \ +} + +#define EMIT_RR(_name, _op) \ +void _name (struct spe_function *p, int rT, int rA, int rB) \ +{ \ + emit_RR(p, _op, rT, rA, rB, __FUNCTION__); \ +} + +#define EMIT_RRR(_name, _op) \ +void _name (struct spe_function *p, int rT, int rA, int rB, int rC) \ +{ \ + emit_RRR(p, _op, rT, rA, rB, rC, __FUNCTION__); \ +} + +#define EMIT_RI7(_name, _op) \ +void _name (struct spe_function *p, int rT, int rA, int imm) \ +{ \ + emit_RI7(p, _op, rT, rA, imm, __FUNCTION__); \ +} + +#define EMIT_RI8(_name, _op, bias) \ +void _name (struct spe_function *p, int rT, int rA, int imm) \ +{ \ + emit_RI8(p, _op, rT, rA, bias - imm, __FUNCTION__); \ +} + +#define EMIT_RI10(_name, _op) \ +void _name (struct spe_function *p, int rT, int rA, int imm) \ +{ \ + emit_RI10(p, _op, rT, rA, imm, __FUNCTION__); \ +} + +#define EMIT_RI10s(_name, _op) \ +void _name (struct spe_function *p, int rT, int rA, int imm) \ +{ \ + emit_RI10s(p, _op, rT, rA, imm, __FUNCTION__); \ +} + +#define EMIT_RI16(_name, _op) \ +void _name (struct spe_function *p, int rT, int imm) \ +{ \ + emit_RI16(p, _op, rT, imm, __FUNCTION__); \ +} + +#define EMIT_RI18(_name, _op) \ +void _name (struct spe_function *p, int rT, int imm) \ +{ \ + emit_RI18(p, _op, rT, imm, __FUNCTION__); \ +} + +#define EMIT_I16(_name, _op) \ +void _name (struct spe_function *p, int imm) \ +{ \ + emit_RI16(p, _op, 0, imm, __FUNCTION__); \ +} + +#include "rtasm_ppc_spe.h" + + + +/** + * Initialize an spe_function. + * \param code_size initial size of instruction buffer to allocate, in bytes. + * If zero, use a default. + */ +void spe_init_func(struct spe_function *p, unsigned code_size) +{ + uint i; + + if (!code_size) + code_size = 64; + + p->num_inst = 0; + p->max_inst = code_size / SPE_INST_SIZE; + p->store = align_malloc(code_size, 16); + + p->set_count = 0; + memset(p->regs, 0, SPE_NUM_REGS * sizeof(p->regs[0])); + + /* Conservatively treat R0 - R2 and R80 - R127 as non-volatile. + */ + p->regs[0] = p->regs[1] = p->regs[2] = 1; + for (i = 80; i <= 127; i++) { + p->regs[i] = 1; + } + + p->print = FALSE; + p->indent = 0; +} + + +void spe_release_func(struct spe_function *p) +{ + assert(p->num_inst <= p->max_inst); + if (p->store != NULL) { + align_free(p->store); + } + p->store = NULL; +} + + +/** Return current code size in bytes. */ +unsigned spe_code_size(const struct spe_function *p) +{ + return p->num_inst * SPE_INST_SIZE; +} + + +/** + * Allocate a SPE register. + * \return register index or -1 if none left. + */ +int spe_allocate_available_register(struct spe_function *p) +{ + unsigned i; + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] == 0) { + p->regs[i] = 1; + return i; + } + } + + return -1; +} + + +/** + * Mark the given SPE register as "allocated". + */ +int spe_allocate_register(struct spe_function *p, int reg) +{ + assert(reg < SPE_NUM_REGS); + assert(p->regs[reg] == 0); + p->regs[reg] = 1; + return reg; +} + + +/** + * Mark the given SPE register as "unallocated". Note that this should + * only be used on registers allocated in the current register set; an + * assertion will fail if an attempt is made to deallocate a register + * allocated in an earlier register set. + */ +void spe_release_register(struct spe_function *p, int reg) +{ + assert(reg >= 0); + assert(reg < SPE_NUM_REGS); + assert(p->regs[reg] == 1); + + p->regs[reg] = 0; +} + +/** + * Start a new set of registers. This can be called if + * it will be difficult later to determine exactly what + * registers were actually allocated during a code generation + * sequence, and you really just want to deallocate all of them. + */ +void spe_allocate_register_set(struct spe_function *p) +{ + uint i; + + /* Keep track of the set count. If it ever wraps around to 0, + * we're in trouble. + */ + p->set_count++; + assert(p->set_count > 0); + + /* Increment the allocation count of all registers currently + * allocated. Then any registers that are allocated in this set + * will be the only ones with a count of 1; they'll all be released + * when the register set is released. + */ + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] > 0) + p->regs[i]++; + } +} + +void spe_release_register_set(struct spe_function *p) +{ + uint i; + + /* If the set count drops below zero, we're in trouble. */ + assert(p->set_count > 0); + p->set_count--; + + /* Drop the allocation level of all registers. Any allocated + * during this register set will drop to 0 and then become + * available. + */ + for (i = 0; i < SPE_NUM_REGS; i++) { + if (p->regs[i] > 0) + p->regs[i]--; + } +} + + +unsigned +spe_get_registers_used(const struct spe_function *p, ubyte used[]) +{ + unsigned i, num = 0; + /* only count registers in the range available to callers */ + for (i = 2; i < 80; i++) { + if (p->regs[i]) { + used[num++] = i; + } + } + return num; +} + + +void +spe_print_code(struct spe_function *p, boolean enable) +{ + p->print = enable; +} + + +void +spe_indent(struct spe_function *p, int spaces) +{ + p->indent += spaces; +} + + +void +spe_comment(struct spe_function *p, int rel_indent, const char *s) +{ + if (p->print) { + p->indent += rel_indent; + indent(p); + p->indent -= rel_indent; + printf("# %s\n", s); + } +} + + +/** + * Load quad word. + * NOTE: offset is in bytes and the least significant 4 bits must be zero! + */ +void spe_lqd(struct spe_function *p, int rT, int rA, int offset) +{ + const boolean pSave = p->print; + + /* offset must be a multiple of 16 */ + assert(offset % 16 == 0); + /* offset must fit in 10-bit signed int field, after shifting */ + assert((offset >> 4) <= 511); + assert((offset >> 4) >= -512); + + p->print = FALSE; + emit_RI10(p, 0x034, rT, rA, offset >> 4, "spe_lqd"); + p->print = pSave; + + if (p->print) { + indent(p); + printf("lqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA)); + } +} + + +/** + * Store quad word. + * NOTE: offset is in bytes and the least significant 4 bits must be zero! + */ +void spe_stqd(struct spe_function *p, int rT, int rA, int offset) +{ + const boolean pSave = p->print; + + /* offset must be a multiple of 16 */ + assert(offset % 16 == 0); + /* offset must fit in 10-bit signed int field, after shifting */ + assert((offset >> 4) <= 511); + assert((offset >> 4) >= -512); + + p->print = FALSE; + emit_RI10(p, 0x024, rT, rA, offset >> 4, "spe_stqd"); + p->print = pSave; + + if (p->print) { + indent(p); + printf("stqd\t%s, %d(%s)\n", reg_name(rT), offset, reg_name(rA)); + } +} + + +/** + * For branch instructions: + * \param d if 1, disable interupts if branch is taken + * \param e if 1, enable interupts if branch is taken + * If d and e are both zero, don't change interupt status (right?) + */ + +/** Branch Indirect to address in rA */ +void spe_bi(struct spe_function *p, int rA, int d, int e) +{ + emit_RI7(p, 0x1a8, 0, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Interupt Return */ +void spe_iret(struct spe_function *p, int rA, int d, int e) +{ + emit_RI7(p, 0x1aa, 0, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Branch indirect and set link on external data */ +void spe_bisled(struct spe_function *p, int rT, int rA, int d, + int e) +{ + emit_RI7(p, 0x1ab, rT, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Branch indirect and set link. Save PC in rT, jump to rA. */ +void spe_bisl(struct spe_function *p, int rT, int rA, int d, + int e) +{ + emit_RI7(p, 0x1a9, rT, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Branch indirect if zero word. If rT.word[0]==0, jump to rA. */ +void spe_biz(struct spe_function *p, int rT, int rA, int d, int e) +{ + emit_RI7(p, 0x128, rT, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Branch indirect if non-zero word. If rT.word[0]!=0, jump to rA. */ +void spe_binz(struct spe_function *p, int rT, int rA, int d, int e) +{ + emit_RI7(p, 0x129, rT, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Branch indirect if zero halfword. If rT.halfword[1]==0, jump to rA. */ +void spe_bihz(struct spe_function *p, int rT, int rA, int d, int e) +{ + emit_RI7(p, 0x12a, rT, rA, (d << 5) | (e << 4), __FUNCTION__); +} + +/** Branch indirect if non-zero halfword. If rT.halfword[1]!=0, jump to rA. */ +void spe_bihnz(struct spe_function *p, int rT, int rA, int d, int e) +{ + emit_RI7(p, 0x12b, rT, rA, (d << 5) | (e << 4), __FUNCTION__); +} + + +/* Hint-for-branch instructions + */ +#if 0 +hbr; +hbra; +hbrr; +#endif + + +/* Control instructions + */ +#if 0 +stop; +EMIT_RR (spe_stopd, 0x140); +EMIT_ (spe_nop, 0x201); +sync; +EMIT_ (spe_dsync, 0x003); +EMIT_R (spe_mfspr, 0x00c); +EMIT_R (spe_mtspr, 0x10c); +#endif + + +/** + ** Helper / "macro" instructions. + ** Use somewhat verbose names as a reminder that these aren't native + ** SPE instructions. + **/ + + +void +spe_load_float(struct spe_function *p, int rT, float x) +{ + if (x == 0.0f) { + spe_il(p, rT, 0x0); + } + else if (x == 0.5f) { + spe_ilhu(p, rT, 0x3f00); + } + else if (x == 1.0f) { + spe_ilhu(p, rT, 0x3f80); + } + else if (x == -1.0f) { + spe_ilhu(p, rT, 0xbf80); + } + else { + union { + float f; + unsigned u; + } bits; + bits.f = x; + spe_ilhu(p, rT, bits.u >> 16); + spe_iohl(p, rT, bits.u & 0xffff); + } +} + + +void +spe_load_int(struct spe_function *p, int rT, int i) +{ + if (-32768 <= i && i <= 32767) { + spe_il(p, rT, i); + } + else { + spe_ilhu(p, rT, i >> 16); + if (i & 0xffff) + spe_iohl(p, rT, i & 0xffff); + } +} + +void spe_load_uint(struct spe_function *p, int rT, uint ui) +{ + /* If the whole value is in the lower 18 bits, use ila, which + * doesn't sign-extend. Otherwise, if the two halfwords of + * the constant are identical, use ilh. Otherwise, if every byte of + * the desired value is 0x00 or 0xff, we can use Form Select Mask for + * Bytes Immediate (fsmbi) to load the value in a single instruction. + * Otherwise, in the general case, we have to use ilhu followed by iohl. + */ + if ((ui & 0x0003ffff) == ui) { + spe_ila(p, rT, ui); + } + else if ((ui >> 16) == (ui & 0xffff)) { + spe_ilh(p, rT, ui & 0xffff); + } + else if ( + ((ui & 0x000000ff) == 0 || (ui & 0x000000ff) == 0x000000ff) && + ((ui & 0x0000ff00) == 0 || (ui & 0x0000ff00) == 0x0000ff00) && + ((ui & 0x00ff0000) == 0 || (ui & 0x00ff0000) == 0x00ff0000) && + ((ui & 0xff000000) == 0 || (ui & 0xff000000) == 0xff000000) + ) { + uint mask = 0; + /* fsmbi duplicates each bit in the given mask eight times, + * using a 16-bit value to initialize a 16-byte quadword. + * Each 4-bit nybble of the mask corresponds to a full word + * of the result; look at the value and figure out the mask + * (replicated for each word in the quadword), and then + * form the "select mask" to get the value. + */ + if ((ui & 0x000000ff) == 0x000000ff) mask |= 0x1111; + if ((ui & 0x0000ff00) == 0x0000ff00) mask |= 0x2222; + if ((ui & 0x00ff0000) == 0x00ff0000) mask |= 0x4444; + if ((ui & 0xff000000) == 0xff000000) mask |= 0x8888; + spe_fsmbi(p, rT, mask); + } + else { + /* The general case: this usually uses two instructions, but + * may use only one if the low-order 16 bits of each word are 0. + */ + spe_ilhu(p, rT, ui >> 16); + if (ui & 0xffff) + spe_iohl(p, rT, ui & 0xffff); + } +} + +/** + * This function is constructed identically to spe_xor_uint() below. + * Changes to one should be made in the other. + */ +void +spe_and_uint(struct spe_function *p, int rT, int rA, uint ui) +{ + /* If we can, emit a single instruction, either And Byte Immediate + * (which uses the same constant across each byte), And Halfword Immediate + * (which sign-extends a 10-bit immediate to 16 bits and uses that + * across each halfword), or And Word Immediate (which sign-extends + * a 10-bit immediate to 32 bits). + * + * Otherwise, we'll need to use a temporary register. + */ + uint tmp; + + /* If the upper 23 bits are all 0s or all 1s, sign extension + * will work and we can use And Word Immediate + */ + tmp = ui & 0xfffffe00; + if (tmp == 0xfffffe00 || tmp == 0) { + spe_andi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric along halfword boundaries and + * the upper 7 bits of each halfword are all 0s or 1s, we + * can use And Halfword Immediate + */ + tmp = ui & 0xfe00fe00; + if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { + spe_andhi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric in each byte, then we can use + * the And Byte Immediate instruction. + */ + tmp = ui & 0x000000ff; + if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { + spe_andbi(p, rT, rA, tmp); + return; + } + + /* Otherwise, we'll have to use a temporary register. */ + int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_and(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); +} + + +/** + * This function is constructed identically to spe_and_uint() above. + * Changes to one should be made in the other. + */ +void +spe_xor_uint(struct spe_function *p, int rT, int rA, uint ui) +{ + /* If we can, emit a single instruction, either Exclusive Or Byte + * Immediate (which uses the same constant across each byte), Exclusive + * Or Halfword Immediate (which sign-extends a 10-bit immediate to + * 16 bits and uses that across each halfword), or Exclusive Or Word + * Immediate (which sign-extends a 10-bit immediate to 32 bits). + * + * Otherwise, we'll need to use a temporary register. + */ + uint tmp; + + /* If the upper 23 bits are all 0s or all 1s, sign extension + * will work and we can use Exclusive Or Word Immediate + */ + tmp = ui & 0xfffffe00; + if (tmp == 0xfffffe00 || tmp == 0) { + spe_xori(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric along halfword boundaries and + * the upper 7 bits of each halfword are all 0s or 1s, we + * can use Exclusive Or Halfword Immediate + */ + tmp = ui & 0xfe00fe00; + if ((tmp == 0xfe00fe00 || tmp == 0) && ((ui >> 16) == (ui & 0x0000ffff))) { + spe_xorhi(p, rT, rA, ui & 0x000003ff); + return; + } + + /* If the ui field is symmetric in each byte, then we can use + * the Exclusive Or Byte Immediate instruction. + */ + tmp = ui & 0x000000ff; + if ((ui >> 24) == tmp && ((ui >> 16) & 0xff) == tmp && ((ui >> 8) & 0xff) == tmp) { + spe_xorbi(p, rT, rA, tmp); + return; + } + + /* Otherwise, we'll have to use a temporary register. */ + int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_xor(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); +} + +void +spe_compare_equal_uint(struct spe_function *p, int rT, int rA, uint ui) +{ + /* If the comparison value is 9 bits or less, it fits inside a + * Compare Equal Word Immediate instruction. + */ + if ((ui & 0x000001ff) == ui) { + spe_ceqi(p, rT, rA, ui); + } + /* Otherwise, we're going to have to load a word first. */ + else { + int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_ceq(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); + } +} + +void +spe_compare_greater_uint(struct spe_function *p, int rT, int rA, uint ui) +{ + /* If the comparison value is 10 bits or less, it fits inside a + * Compare Logical Greater Than Word Immediate instruction. + */ + if ((ui & 0x000003ff) == ui) { + spe_clgti(p, rT, rA, ui); + } + /* Otherwise, we're going to have to load a word first. */ + else { + int tmp_reg = spe_allocate_available_register(p); + spe_load_uint(p, tmp_reg, ui); + spe_clgt(p, rT, rA, tmp_reg); + spe_release_register(p, tmp_reg); + } +} + +void +spe_splat(struct spe_function *p, int rT, int rA) +{ + /* Use a temporary, just in case rT == rA */ + int tmp_reg = spe_allocate_available_register(p); + /* Duplicate bytes 0, 1, 2, and 3 across the whole register */ + spe_ila(p, tmp_reg, 0x00010203); + spe_shufb(p, rT, rA, rA, tmp_reg); + spe_release_register(p, tmp_reg); +} + + +void +spe_complement(struct spe_function *p, int rT, int rA) +{ + spe_nor(p, rT, rA, rA); +} + + +void +spe_move(struct spe_function *p, int rT, int rA) +{ + /* Use different instructions depending on the instruction address + * to take advantage of the dual pipelines. + */ + if (p->num_inst & 1) + spe_shlqbyi(p, rT, rA, 0); /* odd pipe */ + else + spe_ori(p, rT, rA, 0); /* even pipe */ +} + + +void +spe_zero(struct spe_function *p, int rT) +{ + spe_xor(p, rT, rT, rT); +} + + +void +spe_splat_word(struct spe_function *p, int rT, int rA, int word) +{ + assert(word >= 0); + assert(word <= 3); + + if (word == 0) { + int tmp1 = rT; + spe_ila(p, tmp1, 66051); + spe_shufb(p, rT, rA, rA, tmp1); + } + else { + /* XXX review this, we may not need the rotqbyi instruction */ + int tmp1 = rT; + int tmp2 = spe_allocate_available_register(p); + + spe_ila(p, tmp1, 66051); + spe_rotqbyi(p, tmp2, rA, 4 * word); + spe_shufb(p, rT, tmp2, tmp2, tmp1); + + spe_release_register(p, tmp2); + } +} + +/** + * For each 32-bit float element of rA and rB, choose the smaller of the + * two, compositing them into the rT register. + * + * The Float Compare Greater Than (fcgt) instruction will put 1s into + * compare_reg where rA > rB, and 0s where rA <= rB. + * + * Then the Select Bits (selb) instruction will take bits from rA where + * compare_reg is 0, and from rB where compare_reg is 1; i.e., from rA + * where rA <= rB and from rB where rB > rA, which is exactly the + * "min" operation. + * + * The compare_reg could in many cases be the same as rT, unless + * rT == rA || rt == rB. But since this is common in constructions + * like "x = min(x, a)", we always allocate a new register to be safe. + */ +void +spe_float_min(struct spe_function *p, int rT, int rA, int rB) +{ + int compare_reg = spe_allocate_available_register(p); + spe_fcgt(p, compare_reg, rA, rB); + spe_selb(p, rT, rA, rB, compare_reg); + spe_release_register(p, compare_reg); +} + +/** + * For each 32-bit float element of rA and rB, choose the greater of the + * two, compositing them into the rT register. + * + * The logic is similar to that of spe_float_min() above; the only + * difference is that the registers on spe_selb() have been reversed, + * so that the larger of the two is selected instead of the smaller. + */ +void +spe_float_max(struct spe_function *p, int rT, int rA, int rB) +{ + int compare_reg = spe_allocate_available_register(p); + spe_fcgt(p, compare_reg, rA, rB); + spe_selb(p, rT, rB, rA, compare_reg); + spe_release_register(p, compare_reg); +} + +#endif /* GALLIUM_CELL */ |