summaryrefslogtreecommitdiff
path: root/src/mesa/slang/slang_codegen.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/mesa/slang/slang_codegen.c')
-rw-r--r--src/mesa/slang/slang_codegen.c5357
1 files changed, 5357 insertions, 0 deletions
diff --git a/src/mesa/slang/slang_codegen.c b/src/mesa/slang/slang_codegen.c
new file mode 100644
index 0000000000..0504d47765
--- /dev/null
+++ b/src/mesa/slang/slang_codegen.c
@@ -0,0 +1,5357 @@
+/*
+ * Mesa 3-D graphics library
+ *
+ * Copyright (C) 2005-2007 Brian Paul All Rights Reserved.
+ * Copyright (C) 2008 VMware, Inc. All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included
+ * in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+ * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
+ * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+/**
+ * \file slang_codegen.c
+ * Generate IR tree from AST.
+ * \author Brian Paul
+ */
+
+
+/***
+ *** NOTES:
+ *** The new_() functions return a new instance of a simple IR node.
+ *** The gen_() functions generate larger IR trees from the simple nodes.
+ ***/
+
+
+
+#include "main/imports.h"
+#include "main/macros.h"
+#include "main/mtypes.h"
+#include "shader/program.h"
+#include "shader/prog_instruction.h"
+#include "shader/prog_parameter.h"
+#include "shader/prog_print.h"
+#include "shader/prog_statevars.h"
+#include "slang_typeinfo.h"
+#include "slang_builtin.h"
+#include "slang_codegen.h"
+#include "slang_compile.h"
+#include "slang_label.h"
+#include "slang_mem.h"
+#include "slang_simplify.h"
+#include "slang_emit.h"
+#include "slang_vartable.h"
+#include "slang_ir.h"
+#include "slang_print.h"
+
+
+/** Max iterations to unroll */
+const GLuint MAX_FOR_LOOP_UNROLL_ITERATIONS = 32;
+
+/** Max for-loop body size (in slang operations) to unroll */
+const GLuint MAX_FOR_LOOP_UNROLL_BODY_SIZE = 50;
+
+/** Max for-loop body complexity to unroll.
+ * We'll compute complexity as the product of the number of iterations
+ * and the size of the body. So long-ish loops with very simple bodies
+ * can be unrolled, as well as short loops with larger bodies.
+ */
+const GLuint MAX_FOR_LOOP_UNROLL_COMPLEXITY = 256;
+
+
+
+static slang_ir_node *
+_slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper);
+
+static void
+slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
+ GLuint substCount, slang_variable **substOld,
+ slang_operation **substNew, GLboolean isLHS);
+
+
+/**
+ * Retrieves type information about an operation.
+ * Returns GL_TRUE on success.
+ * Returns GL_FALSE otherwise.
+ */
+static GLboolean
+typeof_operation(const struct slang_assemble_ctx_ *A,
+ slang_operation *op,
+ slang_typeinfo *ti)
+{
+ return _slang_typeof_operation(op, &A->space, ti, A->atoms, A->log);
+}
+
+
+static GLboolean
+is_sampler_type(const slang_fully_specified_type *t)
+{
+ switch (t->specifier.type) {
+ case SLANG_SPEC_SAMPLER_1D:
+ case SLANG_SPEC_SAMPLER_2D:
+ case SLANG_SPEC_SAMPLER_3D:
+ case SLANG_SPEC_SAMPLER_CUBE:
+ case SLANG_SPEC_SAMPLER_1D_SHADOW:
+ case SLANG_SPEC_SAMPLER_2D_SHADOW:
+ case SLANG_SPEC_SAMPLER_RECT:
+ case SLANG_SPEC_SAMPLER_RECT_SHADOW:
+ case SLANG_SPEC_SAMPLER_1D_ARRAY:
+ case SLANG_SPEC_SAMPLER_2D_ARRAY:
+ case SLANG_SPEC_SAMPLER_1D_ARRAY_SHADOW:
+ case SLANG_SPEC_SAMPLER_2D_ARRAY_SHADOW:
+ return GL_TRUE;
+ default:
+ return GL_FALSE;
+ }
+}
+
+
+/**
+ * Return the offset (in floats or ints) of the named field within
+ * the given struct. Return -1 if field not found.
+ * If field is NULL, return the size of the struct instead.
+ */
+static GLint
+_slang_field_offset(const slang_type_specifier *spec, slang_atom field)
+{
+ GLint offset = 0;
+ GLuint i;
+ for (i = 0; i < spec->_struct->fields->num_variables; i++) {
+ const slang_variable *v = spec->_struct->fields->variables[i];
+ const GLuint sz = _slang_sizeof_type_specifier(&v->type.specifier);
+ if (sz > 1) {
+ /* types larger than 1 float are register (4-float) aligned */
+ offset = (offset + 3) & ~3;
+ }
+ if (field && v->a_name == field) {
+ return offset;
+ }
+ offset += sz;
+ }
+ if (field)
+ return -1; /* field not found */
+ else
+ return offset; /* struct size */
+}
+
+
+/**
+ * Return the size (in floats) of the given type specifier.
+ * If the size is greater than 4, the size should be a multiple of 4
+ * so that the correct number of 4-float registers are allocated.
+ * For example, a mat3x2 is size 12 because we want to store the
+ * 3 columns in 3 float[4] registers.
+ */
+GLuint
+_slang_sizeof_type_specifier(const slang_type_specifier *spec)
+{
+ GLuint sz;
+ switch (spec->type) {
+ case SLANG_SPEC_VOID:
+ sz = 0;
+ break;
+ case SLANG_SPEC_BOOL:
+ sz = 1;
+ break;
+ case SLANG_SPEC_BVEC2:
+ sz = 2;
+ break;
+ case SLANG_SPEC_BVEC3:
+ sz = 3;
+ break;
+ case SLANG_SPEC_BVEC4:
+ sz = 4;
+ break;
+ case SLANG_SPEC_INT:
+ sz = 1;
+ break;
+ case SLANG_SPEC_IVEC2:
+ sz = 2;
+ break;
+ case SLANG_SPEC_IVEC3:
+ sz = 3;
+ break;
+ case SLANG_SPEC_IVEC4:
+ sz = 4;
+ break;
+ case SLANG_SPEC_FLOAT:
+ sz = 1;
+ break;
+ case SLANG_SPEC_VEC2:
+ sz = 2;
+ break;
+ case SLANG_SPEC_VEC3:
+ sz = 3;
+ break;
+ case SLANG_SPEC_VEC4:
+ sz = 4;
+ break;
+ case SLANG_SPEC_MAT2:
+ sz = 2 * 4; /* 2 columns (regs) */
+ break;
+ case SLANG_SPEC_MAT3:
+ sz = 3 * 4;
+ break;
+ case SLANG_SPEC_MAT4:
+ sz = 4 * 4;
+ break;
+ case SLANG_SPEC_MAT23:
+ sz = 2 * 4; /* 2 columns (regs) */
+ break;
+ case SLANG_SPEC_MAT32:
+ sz = 3 * 4; /* 3 columns (regs) */
+ break;
+ case SLANG_SPEC_MAT24:
+ sz = 2 * 4;
+ break;
+ case SLANG_SPEC_MAT42:
+ sz = 4 * 4; /* 4 columns (regs) */
+ break;
+ case SLANG_SPEC_MAT34:
+ sz = 3 * 4;
+ break;
+ case SLANG_SPEC_MAT43:
+ sz = 4 * 4; /* 4 columns (regs) */
+ break;
+ case SLANG_SPEC_SAMPLER_1D:
+ case SLANG_SPEC_SAMPLER_2D:
+ case SLANG_SPEC_SAMPLER_3D:
+ case SLANG_SPEC_SAMPLER_CUBE:
+ case SLANG_SPEC_SAMPLER_1D_SHADOW:
+ case SLANG_SPEC_SAMPLER_2D_SHADOW:
+ case SLANG_SPEC_SAMPLER_RECT:
+ case SLANG_SPEC_SAMPLER_RECT_SHADOW:
+ case SLANG_SPEC_SAMPLER_1D_ARRAY:
+ case SLANG_SPEC_SAMPLER_2D_ARRAY:
+ case SLANG_SPEC_SAMPLER_1D_ARRAY_SHADOW:
+ case SLANG_SPEC_SAMPLER_2D_ARRAY_SHADOW:
+ sz = 1; /* a sampler is basically just an integer index */
+ break;
+ case SLANG_SPEC_STRUCT:
+ sz = _slang_field_offset(spec, 0); /* special use */
+ if (sz == 1) {
+ /* 1-float structs are actually troublesome to deal with since they
+ * might get placed at R.x, R.y, R.z or R.z. Return size=2 to
+ * ensure the object is placed at R.x
+ */
+ sz = 2;
+ }
+ else if (sz > 4) {
+ sz = (sz + 3) & ~0x3; /* round up to multiple of four */
+ }
+ break;
+ case SLANG_SPEC_ARRAY:
+ sz = _slang_sizeof_type_specifier(spec->_array);
+ break;
+ default:
+ _mesa_problem(NULL, "Unexpected type in _slang_sizeof_type_specifier()");
+ sz = 0;
+ }
+
+ if (sz > 4) {
+ /* if size is > 4, it should be a multiple of four */
+ assert((sz & 0x3) == 0);
+ }
+ return sz;
+}
+
+
+/**
+ * Query variable/array length (number of elements).
+ * This is slightly non-trivial because there are two ways to express
+ * arrays: "float x[3]" vs. "float[3] x".
+ * \return the length of the array for the given variable, or 0 if not an array
+ */
+static GLint
+_slang_array_length(const slang_variable *var)
+{
+ if (var->type.array_len > 0) {
+ /* Ex: float[4] x; */
+ return var->type.array_len;
+ }
+ if (var->array_len > 0) {
+ /* Ex: float x[4]; */
+ return var->array_len;
+ }
+ return 0;
+}
+
+
+/**
+ * Compute total size of array give size of element, number of elements.
+ * \return size in floats
+ */
+static GLint
+_slang_array_size(GLint elemSize, GLint arrayLen)
+{
+ GLint total;
+ assert(elemSize > 0);
+ if (arrayLen > 1) {
+ /* round up base type to multiple of 4 */
+ total = ((elemSize + 3) & ~0x3) * MAX2(arrayLen, 1);
+ }
+ else {
+ total = elemSize;
+ }
+ return total;
+}
+
+
+/**
+ * Return the TEXTURE_*_INDEX value that corresponds to a sampler type,
+ * or -1 if the type is not a sampler.
+ */
+static GLint
+sampler_to_texture_index(const slang_type_specifier_type type)
+{
+ switch (type) {
+ case SLANG_SPEC_SAMPLER_1D:
+ return TEXTURE_1D_INDEX;
+ case SLANG_SPEC_SAMPLER_2D:
+ return TEXTURE_2D_INDEX;
+ case SLANG_SPEC_SAMPLER_3D:
+ return TEXTURE_3D_INDEX;
+ case SLANG_SPEC_SAMPLER_CUBE:
+ return TEXTURE_CUBE_INDEX;
+ case SLANG_SPEC_SAMPLER_1D_SHADOW:
+ return TEXTURE_1D_INDEX; /* XXX fix */
+ case SLANG_SPEC_SAMPLER_2D_SHADOW:
+ return TEXTURE_2D_INDEX; /* XXX fix */
+ case SLANG_SPEC_SAMPLER_RECT:
+ return TEXTURE_RECT_INDEX;
+ case SLANG_SPEC_SAMPLER_RECT_SHADOW:
+ return TEXTURE_RECT_INDEX; /* XXX fix */
+ case SLANG_SPEC_SAMPLER_1D_ARRAY:
+ return TEXTURE_1D_ARRAY_INDEX;
+ case SLANG_SPEC_SAMPLER_2D_ARRAY:
+ return TEXTURE_2D_ARRAY_INDEX;
+ case SLANG_SPEC_SAMPLER_1D_ARRAY_SHADOW:
+ return TEXTURE_1D_ARRAY_INDEX;
+ case SLANG_SPEC_SAMPLER_2D_ARRAY_SHADOW:
+ return TEXTURE_2D_ARRAY_INDEX;
+ default:
+ return -1;
+ }
+}
+
+
+/** helper to build a SLANG_OPER_IDENTIFIER node */
+static void
+slang_operation_identifier(slang_operation *oper,
+ slang_assemble_ctx *A,
+ const char *name)
+{
+ oper->type = SLANG_OPER_IDENTIFIER;
+ oper->a_id = slang_atom_pool_atom(A->atoms, name);
+}
+
+
+/**
+ * Called when we begin code/IR generation for a new while/do/for loop.
+ */
+static void
+push_loop(slang_assemble_ctx *A, slang_operation *loopOper, slang_ir_node *loopIR)
+{
+ A->LoopOperStack[A->LoopDepth] = loopOper;
+ A->LoopIRStack[A->LoopDepth] = loopIR;
+ A->LoopDepth++;
+}
+
+
+/**
+ * Called when we end code/IR generation for a new while/do/for loop.
+ */
+static void
+pop_loop(slang_assemble_ctx *A)
+{
+ assert(A->LoopDepth > 0);
+ A->LoopDepth--;
+}
+
+
+/**
+ * Return pointer to slang_operation for the loop we're currently inside,
+ * or NULL if not in a loop.
+ */
+static const slang_operation *
+current_loop_oper(const slang_assemble_ctx *A)
+{
+ if (A->LoopDepth > 0)
+ return A->LoopOperStack[A->LoopDepth - 1];
+ else
+ return NULL;
+}
+
+
+/**
+ * Return pointer to slang_ir_node for the loop we're currently inside,
+ * or NULL if not in a loop.
+ */
+static slang_ir_node *
+current_loop_ir(const slang_assemble_ctx *A)
+{
+ if (A->LoopDepth > 0)
+ return A->LoopIRStack[A->LoopDepth - 1];
+ else
+ return NULL;
+}
+
+
+/**********************************************************************/
+
+
+/**
+ * Map "_asm foo" to IR_FOO, etc.
+ */
+typedef struct
+{
+ const char *Name;
+ slang_ir_opcode Opcode;
+ GLuint HaveRetValue, NumParams;
+} slang_asm_info;
+
+
+static slang_asm_info AsmInfo[] = {
+ /* vec4 binary op */
+ { "vec4_add", IR_ADD, 1, 2 },
+ { "vec4_subtract", IR_SUB, 1, 2 },
+ { "vec4_multiply", IR_MUL, 1, 2 },
+ { "vec4_dot", IR_DOT4, 1, 2 },
+ { "vec3_dot", IR_DOT3, 1, 2 },
+ { "vec2_dot", IR_DOT2, 1, 2 },
+ { "vec3_nrm", IR_NRM3, 1, 1 },
+ { "vec4_nrm", IR_NRM4, 1, 1 },
+ { "vec3_cross", IR_CROSS, 1, 2 },
+ { "vec4_lrp", IR_LRP, 1, 3 },
+ { "vec4_min", IR_MIN, 1, 2 },
+ { "vec4_max", IR_MAX, 1, 2 },
+ { "vec4_cmp", IR_CMP, 1, 3 },
+ { "vec4_clamp", IR_CLAMP, 1, 3 },
+ { "vec4_seq", IR_SEQUAL, 1, 2 },
+ { "vec4_sne", IR_SNEQUAL, 1, 2 },
+ { "vec4_sge", IR_SGE, 1, 2 },
+ { "vec4_sgt", IR_SGT, 1, 2 },
+ { "vec4_sle", IR_SLE, 1, 2 },
+ { "vec4_slt", IR_SLT, 1, 2 },
+ /* vec4 unary */
+ { "vec4_move", IR_MOVE, 1, 1 },
+ { "vec4_floor", IR_FLOOR, 1, 1 },
+ { "vec4_frac", IR_FRAC, 1, 1 },
+ { "vec4_abs", IR_ABS, 1, 1 },
+ { "vec4_negate", IR_NEG, 1, 1 },
+ { "vec4_ddx", IR_DDX, 1, 1 },
+ { "vec4_ddy", IR_DDY, 1, 1 },
+ /* float binary op */
+ { "float_power", IR_POW, 1, 2 },
+ /* texture / sampler */
+ { "vec4_tex_1d", IR_TEX, 1, 2 },
+ { "vec4_tex_1d_bias", IR_TEXB, 1, 2 }, /* 1d w/ bias */
+ { "vec4_tex_1d_proj", IR_TEXP, 1, 2 }, /* 1d w/ projection */
+ { "vec4_tex_2d", IR_TEX, 1, 2 },
+ { "vec4_tex_2d_bias", IR_TEXB, 1, 2 }, /* 2d w/ bias */
+ { "vec4_tex_2d_proj", IR_TEXP, 1, 2 }, /* 2d w/ projection */
+ { "vec4_tex_3d", IR_TEX, 1, 2 },
+ { "vec4_tex_3d_bias", IR_TEXB, 1, 2 }, /* 3d w/ bias */
+ { "vec4_tex_3d_proj", IR_TEXP, 1, 2 }, /* 3d w/ projection */
+ { "vec4_tex_cube", IR_TEX, 1, 2 }, /* cubemap */
+ { "vec4_tex_rect", IR_TEX, 1, 2 }, /* rectangle */
+ { "vec4_tex_rect_bias", IR_TEX, 1, 2 }, /* rectangle w/ projection */
+ { "vec4_tex_1d_array", IR_TEX, 1, 2 },
+ { "vec4_tex_1d_array_bias", IR_TEXB, 1, 2 },
+ { "vec4_tex_1d_array_shadow", IR_TEX, 1, 2 },
+ { "vec4_tex_1d_array_bias_shadow", IR_TEXB, 1, 2 },
+ { "vec4_tex_2d_array", IR_TEX, 1, 2 },
+ { "vec4_tex_2d_array_bias", IR_TEXB, 1, 2 },
+ { "vec4_tex_2d_array_shadow", IR_TEX, 1, 2 },
+ { "vec4_tex_2d_array_bias_shadow", IR_TEXB, 1, 2 },
+
+ /* texture / sampler but with shadow comparison */
+ { "vec4_tex_1d_shadow", IR_TEX_SH, 1, 2 },
+ { "vec4_tex_1d_bias_shadow", IR_TEXB_SH, 1, 2 },
+ { "vec4_tex_1d_proj_shadow", IR_TEXP_SH, 1, 2 },
+ { "vec4_tex_2d_shadow", IR_TEX_SH, 1, 2 },
+ { "vec4_tex_2d_bias_shadow", IR_TEXB_SH, 1, 2 },
+ { "vec4_tex_2d_proj_shadow", IR_TEXP_SH, 1, 2 },
+ { "vec4_tex_rect_shadow", IR_TEX_SH, 1, 2 },
+ { "vec4_tex_rect_proj_shadow", IR_TEXP_SH, 1, 2 },
+
+ /* unary op */
+ { "ivec4_to_vec4", IR_I_TO_F, 1, 1 }, /* int[4] to float[4] */
+ { "vec4_to_ivec4", IR_F_TO_I, 1, 1 }, /* float[4] to int[4] */
+ { "float_exp", IR_EXP, 1, 1 },
+ { "float_exp2", IR_EXP2, 1, 1 },
+ { "float_log2", IR_LOG2, 1, 1 },
+ { "float_rsq", IR_RSQ, 1, 1 },
+ { "float_rcp", IR_RCP, 1, 1 },
+ { "float_sine", IR_SIN, 1, 1 },
+ { "float_cosine", IR_COS, 1, 1 },
+ { "float_noise1", IR_NOISE1, 1, 1},
+ { "float_noise2", IR_NOISE2, 1, 1},
+ { "float_noise3", IR_NOISE3, 1, 1},
+ { "float_noise4", IR_NOISE4, 1, 1},
+
+ { NULL, IR_NOP, 0, 0 }
+};
+
+
+static slang_ir_node *
+new_node3(slang_ir_opcode op,
+ slang_ir_node *c0, slang_ir_node *c1, slang_ir_node *c2)
+{
+ slang_ir_node *n = (slang_ir_node *) _slang_alloc(sizeof(slang_ir_node));
+ if (n) {
+ n->Opcode = op;
+ n->Children[0] = c0;
+ n->Children[1] = c1;
+ n->Children[2] = c2;
+ n->InstLocation = -1;
+ }
+ return n;
+}
+
+static slang_ir_node *
+new_node2(slang_ir_opcode op, slang_ir_node *c0, slang_ir_node *c1)
+{
+ return new_node3(op, c0, c1, NULL);
+}
+
+static slang_ir_node *
+new_node1(slang_ir_opcode op, slang_ir_node *c0)
+{
+ return new_node3(op, c0, NULL, NULL);
+}
+
+static slang_ir_node *
+new_node0(slang_ir_opcode op)
+{
+ return new_node3(op, NULL, NULL, NULL);
+}
+
+
+/**
+ * Create sequence of two nodes.
+ */
+static slang_ir_node *
+new_seq(slang_ir_node *left, slang_ir_node *right)
+{
+ if (!left)
+ return right;
+ if (!right)
+ return left;
+ return new_node2(IR_SEQ, left, right);
+}
+
+static slang_ir_node *
+new_label(slang_label *label)
+{
+ slang_ir_node *n = new_node0(IR_LABEL);
+ assert(label);
+ if (n)
+ n->Label = label;
+ return n;
+}
+
+static slang_ir_node *
+new_float_literal(const float v[4], GLuint size)
+{
+ slang_ir_node *n = new_node0(IR_FLOAT);
+ assert(size <= 4);
+ COPY_4V(n->Value, v);
+ /* allocate a storage object, but compute actual location (Index) later */
+ n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
+ return n;
+}
+
+
+static slang_ir_node *
+new_not(slang_ir_node *n)
+{
+ return new_node1(IR_NOT, n);
+}
+
+
+/**
+ * Non-inlined function call.
+ */
+static slang_ir_node *
+new_function_call(slang_ir_node *code, slang_label *name)
+{
+ slang_ir_node *n = new_node1(IR_CALL, code);
+ assert(name);
+ if (n)
+ n->Label = name;
+ return n;
+}
+
+
+/**
+ * Unconditional jump.
+ */
+static slang_ir_node *
+new_return(slang_label *dest)
+{
+ slang_ir_node *n = new_node0(IR_RETURN);
+ assert(dest);
+ if (n)
+ n->Label = dest;
+ return n;
+}
+
+
+static slang_ir_node *
+new_loop(slang_ir_node *body)
+{
+ return new_node1(IR_LOOP, body);
+}
+
+
+static slang_ir_node *
+new_break(slang_ir_node *loopNode)
+{
+ slang_ir_node *n = new_node0(IR_BREAK);
+ assert(loopNode);
+ assert(loopNode->Opcode == IR_LOOP);
+ if (n) {
+ /* insert this node at head of linked list of cont/break instructions */
+ n->List = loopNode->List;
+ loopNode->List = n;
+ }
+ return n;
+}
+
+
+/**
+ * Make new IR_BREAK_IF_TRUE.
+ */
+static slang_ir_node *
+new_break_if_true(slang_assemble_ctx *A, slang_ir_node *cond)
+{
+ slang_ir_node *loopNode = current_loop_ir(A);
+ slang_ir_node *n;
+ assert(loopNode);
+ assert(loopNode->Opcode == IR_LOOP);
+ n = new_node1(IR_BREAK_IF_TRUE, cond);
+ if (n) {
+ /* insert this node at head of linked list of cont/break instructions */
+ n->List = loopNode->List;
+ loopNode->List = n;
+ }
+ return n;
+}
+
+
+/**
+ * Make new IR_CONT_IF_TRUE node.
+ */
+static slang_ir_node *
+new_cont_if_true(slang_assemble_ctx *A, slang_ir_node *cond)
+{
+ slang_ir_node *loopNode = current_loop_ir(A);
+ slang_ir_node *n;
+ assert(loopNode);
+ assert(loopNode->Opcode == IR_LOOP);
+ n = new_node1(IR_CONT_IF_TRUE, cond);
+ if (n) {
+ n->Parent = loopNode; /* pointer to containing loop */
+ /* insert this node at head of linked list of cont/break instructions */
+ n->List = loopNode->List;
+ loopNode->List = n;
+ }
+ return n;
+}
+
+
+static slang_ir_node *
+new_cond(slang_ir_node *n)
+{
+ slang_ir_node *c = new_node1(IR_COND, n);
+ return c;
+}
+
+
+static slang_ir_node *
+new_if(slang_ir_node *cond, slang_ir_node *ifPart, slang_ir_node *elsePart)
+{
+ return new_node3(IR_IF, cond, ifPart, elsePart);
+}
+
+
+/**
+ * New IR_VAR node - a reference to a previously declared variable.
+ */
+static slang_ir_node *
+new_var(slang_assemble_ctx *A, slang_variable *var)
+{
+ slang_ir_node *n = new_node0(IR_VAR);
+ if (n) {
+ ASSERT(var);
+ ASSERT(var->store);
+ ASSERT(!n->Store);
+ ASSERT(!n->Var);
+
+ /* Set IR node's Var and Store pointers */
+ n->Var = var;
+ n->Store = var->store;
+ }
+ return n;
+}
+
+
+/**
+ * Check if the given function is really just a wrapper for a
+ * basic assembly instruction.
+ */
+static GLboolean
+slang_is_asm_function(const slang_function *fun)
+{
+ if (fun->body->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE &&
+ fun->body->num_children == 1 &&
+ fun->body->children[0].type == SLANG_OPER_ASM) {
+ return GL_TRUE;
+ }
+ return GL_FALSE;
+}
+
+
+static GLboolean
+_slang_is_noop(const slang_operation *oper)
+{
+ if (!oper ||
+ oper->type == SLANG_OPER_VOID ||
+ (oper->num_children == 1 && oper->children[0].type == SLANG_OPER_VOID))
+ return GL_TRUE;
+ else
+ return GL_FALSE;
+}
+
+
+/**
+ * Recursively search tree for a node of the given type.
+ */
+#if 0
+static slang_operation *
+_slang_find_node_type(slang_operation *oper, slang_operation_type type)
+{
+ GLuint i;
+ if (oper->type == type)
+ return oper;
+ for (i = 0; i < oper->num_children; i++) {
+ slang_operation *p = _slang_find_node_type(&oper->children[i], type);
+ if (p)
+ return p;
+ }
+ return NULL;
+}
+#endif
+
+
+/**
+ * Count the number of operations of the given time rooted at 'oper'.
+ */
+static GLuint
+_slang_count_node_type(const slang_operation *oper, slang_operation_type type)
+{
+ GLuint i, count = 0;
+ if (oper->type == type) {
+ return 1;
+ }
+ for (i = 0; i < oper->num_children; i++) {
+ count += _slang_count_node_type(&oper->children[i], type);
+ }
+ return count;
+}
+
+
+/**
+ * Check if the 'return' statement found under 'oper' is a "tail return"
+ * that can be no-op'd. For example:
+ *
+ * void func(void)
+ * {
+ * .. do something ..
+ * return; // this is a no-op
+ * }
+ *
+ * This is used when determining if a function can be inlined. If the
+ * 'return' is not the last statement, we can't inline the function since
+ * we still need the semantic behaviour of the 'return' but we don't want
+ * to accidentally return from the _calling_ function. We'd need to use an
+ * unconditional branch, but we don't have such a GPU instruction (not
+ * always, at least).
+ */
+static GLboolean
+_slang_is_tail_return(const slang_operation *oper)
+{
+ GLuint k = oper->num_children;
+
+ while (k > 0) {
+ const slang_operation *last = &oper->children[k - 1];
+ if (last->type == SLANG_OPER_RETURN)
+ return GL_TRUE;
+ else if (last->type == SLANG_OPER_IDENTIFIER ||
+ last->type == SLANG_OPER_LABEL)
+ k--; /* try prev child */
+ else if (last->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
+ last->type == SLANG_OPER_BLOCK_NEW_SCOPE)
+ /* try sub-children */
+ return _slang_is_tail_return(last);
+ else
+ break;
+ }
+
+ return GL_FALSE;
+}
+
+
+/**
+ * Generate a variable declaration opeartion.
+ * I.e.: generate AST code for "bool flag = false;"
+ */
+static void
+slang_generate_declaration(slang_assemble_ctx *A,
+ slang_variable_scope *scope,
+ slang_operation *decl,
+ slang_type_specifier_type type,
+ const char *name,
+ GLint initValue)
+{
+ slang_variable *var;
+
+ assert(type == SLANG_SPEC_BOOL ||
+ type == SLANG_SPEC_INT);
+
+ decl->type = SLANG_OPER_VARIABLE_DECL;
+
+ var = slang_variable_scope_grow(scope);
+
+ slang_fully_specified_type_construct(&var->type);
+
+ var->type.specifier.type = type;
+ var->a_name = slang_atom_pool_atom(A->atoms, name);
+ decl->a_id = var->a_name;
+ var->initializer = slang_operation_new(1);
+ slang_operation_literal_bool(var->initializer, initValue);
+}
+
+
+static void
+slang_resolve_variable(slang_operation *oper)
+{
+ if (oper->type == SLANG_OPER_IDENTIFIER && !oper->var) {
+ oper->var = _slang_variable_locate(oper->locals, oper->a_id, GL_TRUE);
+ }
+}
+
+
+/**
+ * Rewrite AST code for "return expression;".
+ *
+ * We return values from functions by assinging the returned value to
+ * the hidden __retVal variable which is an extra 'out' parameter we add
+ * to the function signature.
+ * This code basically converts "return expr;" into "__retVal = expr; return;"
+ *
+ * \return the new AST code.
+ */
+static slang_operation *
+gen_return_with_expression(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_operation *blockOper, *assignOper;
+
+ assert(oper->type == SLANG_OPER_RETURN);
+
+ if (A->CurFunction->header.type.specifier.type == SLANG_SPEC_VOID) {
+ slang_info_log_error(A->log, "illegal return expression");
+ return NULL;
+ }
+
+ blockOper = slang_operation_new(1);
+ blockOper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
+ blockOper->locals->outer_scope = oper->locals->outer_scope;
+ slang_operation_add_children(blockOper, 2);
+
+ if (A->UseReturnFlag) {
+ /* Emit:
+ * {
+ * if (__notRetFlag)
+ * __retVal = expr;
+ * __notRetFlag = 0;
+ * }
+ */
+ {
+ slang_operation *ifOper = slang_oper_child(blockOper, 0);
+ ifOper->type = SLANG_OPER_IF;
+ slang_operation_add_children(ifOper, 3);
+ {
+ slang_operation *cond = slang_oper_child(ifOper, 0);
+ cond->type = SLANG_OPER_IDENTIFIER;
+ cond->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
+ }
+ {
+ slang_operation *elseOper = slang_oper_child(ifOper, 2);
+ elseOper->type = SLANG_OPER_VOID;
+ }
+ assignOper = slang_oper_child(ifOper, 1);
+ }
+ {
+ slang_operation *setOper = slang_oper_child(blockOper, 1);
+ setOper->type = SLANG_OPER_ASSIGN;
+ slang_operation_add_children(setOper, 2);
+ {
+ slang_operation *lhs = slang_oper_child(setOper, 0);
+ lhs->type = SLANG_OPER_IDENTIFIER;
+ lhs->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
+ }
+ {
+ slang_operation *rhs = slang_oper_child(setOper, 1);
+ slang_operation_literal_bool(rhs, GL_FALSE);
+ }
+ }
+ }
+ else {
+ /* Emit:
+ * {
+ * __retVal = expr;
+ * return_inlined;
+ * }
+ */
+ assignOper = slang_oper_child(blockOper, 0);
+ {
+ slang_operation *returnOper = slang_oper_child(blockOper, 1);
+ returnOper->type = SLANG_OPER_RETURN_INLINED;
+ assert(returnOper->num_children == 0);
+ }
+ }
+
+ /* __retVal = expression; */
+ assignOper->type = SLANG_OPER_ASSIGN;
+ slang_operation_add_children(assignOper, 2);
+ {
+ slang_operation *lhs = slang_oper_child(assignOper, 0);
+ lhs->type = SLANG_OPER_IDENTIFIER;
+ lhs->a_id = slang_atom_pool_atom(A->atoms, "__retVal");
+ }
+ {
+ slang_operation *rhs = slang_oper_child(assignOper, 1);
+ slang_operation_copy(rhs, &oper->children[0]);
+ }
+
+ /*blockOper->locals->outer_scope = oper->locals->outer_scope;*/
+
+ /*slang_print_tree(blockOper, 0);*/
+
+ return blockOper;
+}
+
+
+/**
+ * Rewrite AST code for "return;" (no expression).
+ */
+static slang_operation *
+gen_return_without_expression(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_operation *newRet;
+
+ assert(oper->type == SLANG_OPER_RETURN);
+
+ if (A->CurFunction->header.type.specifier.type != SLANG_SPEC_VOID) {
+ slang_info_log_error(A->log, "return statement requires an expression");
+ return NULL;
+ }
+
+ if (A->UseReturnFlag) {
+ /* Emit:
+ * __notRetFlag = 0;
+ */
+ {
+ newRet = slang_operation_new(1);
+ newRet->locals->outer_scope = oper->locals->outer_scope;
+ newRet->type = SLANG_OPER_ASSIGN;
+ slang_operation_add_children(newRet, 2);
+ {
+ slang_operation *lhs = slang_oper_child(newRet, 0);
+ lhs->type = SLANG_OPER_IDENTIFIER;
+ lhs->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
+ }
+ {
+ slang_operation *rhs = slang_oper_child(newRet, 1);
+ slang_operation_literal_bool(rhs, GL_FALSE);
+ }
+ }
+ }
+ else {
+ /* Emit:
+ * return_inlined;
+ */
+ newRet = slang_operation_new(1);
+ newRet->locals->outer_scope = oper->locals->outer_scope;
+ newRet->type = SLANG_OPER_RETURN_INLINED;
+ }
+
+ /*slang_print_tree(newRet, 0);*/
+
+ return newRet;
+}
+
+
+
+
+/**
+ * Replace particular variables (SLANG_OPER_IDENTIFIER) with new expressions.
+ */
+static void
+slang_substitute(slang_assemble_ctx *A, slang_operation *oper,
+ GLuint substCount, slang_variable **substOld,
+ slang_operation **substNew, GLboolean isLHS)
+{
+ switch (oper->type) {
+ case SLANG_OPER_VARIABLE_DECL:
+ {
+ slang_variable *v = _slang_variable_locate(oper->locals,
+ oper->a_id, GL_TRUE);
+ assert(v);
+ if (v->initializer && oper->num_children == 0) {
+ /* set child of oper to copy of initializer */
+ oper->num_children = 1;
+ oper->children = slang_operation_new(1);
+ slang_operation_copy(&oper->children[0], v->initializer);
+ }
+ if (oper->num_children == 1) {
+ /* the initializer */
+ slang_substitute(A, &oper->children[0], substCount,
+ substOld, substNew, GL_FALSE);
+ }
+ }
+ break;
+ case SLANG_OPER_IDENTIFIER:
+ assert(oper->num_children == 0);
+ if (1/**!isLHS XXX FIX */) {
+ slang_atom id = oper->a_id;
+ slang_variable *v;
+ GLuint i;
+ v = _slang_variable_locate(oper->locals, id, GL_TRUE);
+ if (!v) {
+ if (strcmp((char *) oper->a_id, "__notRetFlag"))
+ _mesa_problem(NULL, "var %s not found!\n", (char *) oper->a_id);
+ return;
+ }
+
+ /* look for a substitution */
+ for (i = 0; i < substCount; i++) {
+ if (v == substOld[i]) {
+ /* OK, replace this SLANG_OPER_IDENTIFIER with a new expr */
+#if 0 /* DEBUG only */
+ if (substNew[i]->type == SLANG_OPER_IDENTIFIER) {
+ assert(substNew[i]->var);
+ assert(substNew[i]->var->a_name);
+ printf("Substitute %s with %s in id node %p\n",
+ (char*)v->a_name, (char*) substNew[i]->var->a_name,
+ (void*) oper);
+ }
+ else {
+ printf("Substitute %s with %f in id node %p\n",
+ (char*)v->a_name, substNew[i]->literal[0],
+ (void*) oper);
+ }
+#endif
+ slang_operation_copy(oper, substNew[i]);
+ break;
+ }
+ }
+ }
+ break;
+
+ case SLANG_OPER_RETURN:
+ {
+ slang_operation *newReturn;
+ /* generate new 'return' code' */
+ if (slang_oper_child(oper, 0)->type == SLANG_OPER_VOID)
+ newReturn = gen_return_without_expression(A, oper);
+ else
+ newReturn = gen_return_with_expression(A, oper);
+
+ if (!newReturn)
+ return;
+
+ /* do substitutions on the new 'return' code */
+ slang_substitute(A, newReturn,
+ substCount, substOld, substNew, GL_FALSE);
+
+ /* install new 'return' code */
+ slang_operation_copy(oper, newReturn);
+ slang_operation_destruct(newReturn);
+ }
+ break;
+
+ case SLANG_OPER_ASSIGN:
+ case SLANG_OPER_SUBSCRIPT:
+ /* special case:
+ * child[0] can't have substitutions but child[1] can.
+ */
+ slang_substitute(A, &oper->children[0],
+ substCount, substOld, substNew, GL_TRUE);
+ slang_substitute(A, &oper->children[1],
+ substCount, substOld, substNew, GL_FALSE);
+ break;
+ case SLANG_OPER_FIELD:
+ /* XXX NEW - test */
+ slang_substitute(A, &oper->children[0],
+ substCount, substOld, substNew, GL_TRUE);
+ break;
+ default:
+ {
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++)
+ slang_substitute(A, &oper->children[i],
+ substCount, substOld, substNew, GL_FALSE);
+ }
+ }
+}
+
+
+/**
+ * Produce inline code for a call to an assembly instruction.
+ * This is typically used to compile a call to a built-in function like this:
+ *
+ * vec4 mix(const vec4 x, const vec4 y, const vec4 a)
+ * {
+ * __asm vec4_lrp __retVal, a, y, x;
+ * }
+ *
+ *
+ * A call to
+ * r = mix(p1, p2, p3);
+ *
+ * Becomes:
+ *
+ * mov
+ * / \
+ * r vec4_lrp
+ * / | \
+ * p3 p2 p1
+ *
+ * We basically translate a SLANG_OPER_CALL into a SLANG_OPER_ASM.
+ */
+static slang_operation *
+slang_inline_asm_function(slang_assemble_ctx *A,
+ slang_function *fun, slang_operation *oper)
+{
+ const GLuint numArgs = oper->num_children;
+ GLuint i;
+ slang_operation *inlined;
+ const GLboolean haveRetValue = _slang_function_has_return_value(fun);
+ slang_variable **substOld;
+ slang_operation **substNew;
+
+ ASSERT(slang_is_asm_function(fun));
+ ASSERT(fun->param_count == numArgs + haveRetValue);
+
+ /*
+ printf("Inline %s as %s\n",
+ (char*) fun->header.a_name,
+ (char*) fun->body->children[0].a_id);
+ */
+
+ /*
+ * We'll substitute formal params with actual args in the asm call.
+ */
+ substOld = (slang_variable **)
+ _slang_alloc(numArgs * sizeof(slang_variable *));
+ substNew = (slang_operation **)
+ _slang_alloc(numArgs * sizeof(slang_operation *));
+ for (i = 0; i < numArgs; i++) {
+ substOld[i] = fun->parameters->variables[i];
+ substNew[i] = oper->children + i;
+ }
+
+ /* make a copy of the code to inline */
+ inlined = slang_operation_new(1);
+ slang_operation_copy(inlined, &fun->body->children[0]);
+ if (haveRetValue) {
+ /* get rid of the __retVal child */
+ inlined->num_children--;
+ for (i = 0; i < inlined->num_children; i++) {
+ inlined->children[i] = inlined->children[i + 1];
+ }
+ }
+
+ /* now do formal->actual substitutions */
+ slang_substitute(A, inlined, numArgs, substOld, substNew, GL_FALSE);
+
+ _slang_free(substOld);
+ _slang_free(substNew);
+
+#if 0
+ printf("+++++++++++++ inlined asm function %s +++++++++++++\n",
+ (char *) fun->header.a_name);
+ slang_print_tree(inlined, 3);
+ printf("+++++++++++++++++++++++++++++++++++++++++++++++++++\n");
+#endif
+
+ return inlined;
+}
+
+
+/**
+ * Inline the given function call operation.
+ * Return a new slang_operation that corresponds to the inlined code.
+ */
+static slang_operation *
+slang_inline_function_call(slang_assemble_ctx * A, slang_function *fun,
+ slang_operation *oper, slang_operation *returnOper)
+{
+ typedef enum {
+ SUBST = 1,
+ COPY_IN,
+ COPY_OUT
+ } ParamMode;
+ ParamMode *paramMode;
+ const GLboolean haveRetValue = _slang_function_has_return_value(fun);
+ const GLuint numArgs = oper->num_children;
+ const GLuint totalArgs = numArgs + haveRetValue;
+ slang_operation *args = oper->children;
+ slang_operation *inlined, *top;
+ slang_variable **substOld;
+ slang_operation **substNew;
+ GLuint substCount, numCopyIn, i;
+ slang_function *prevFunction;
+ slang_variable_scope *newScope = NULL;
+
+ /* save / push */
+ prevFunction = A->CurFunction;
+ A->CurFunction = fun;
+
+ /*assert(oper->type == SLANG_OPER_CALL); (or (matrix) multiply, etc) */
+ assert(fun->param_count == totalArgs);
+
+ /* allocate temporary arrays */
+ paramMode = (ParamMode *)
+ _slang_alloc(totalArgs * sizeof(ParamMode));
+ substOld = (slang_variable **)
+ _slang_alloc(totalArgs * sizeof(slang_variable *));
+ substNew = (slang_operation **)
+ _slang_alloc(totalArgs * sizeof(slang_operation *));
+
+#if 0
+ printf("\nInline call to %s (total vars=%d nparams=%d)\n",
+ (char *) fun->header.a_name,
+ fun->parameters->num_variables, numArgs);
+#endif
+
+ if (haveRetValue && !returnOper) {
+ /* Create 3-child comma sequence for inlined code:
+ * child[0]: declare __resultTmp
+ * child[1]: inlined function body
+ * child[2]: __resultTmp
+ */
+ slang_operation *commaSeq;
+ slang_operation *declOper = NULL;
+ slang_variable *resultVar;
+
+ commaSeq = slang_operation_new(1);
+ commaSeq->type = SLANG_OPER_SEQUENCE;
+ assert(commaSeq->locals);
+ commaSeq->locals->outer_scope = oper->locals->outer_scope;
+ commaSeq->num_children = 3;
+ commaSeq->children = slang_operation_new(3);
+ /* allocate the return var */
+ resultVar = slang_variable_scope_grow(commaSeq->locals);
+ /*
+ printf("Alloc __resultTmp in scope %p for retval of calling %s\n",
+ (void*)commaSeq->locals, (char *) fun->header.a_name);
+ */
+
+ resultVar->a_name = slang_atom_pool_atom(A->atoms, "__resultTmp");
+ resultVar->type = fun->header.type; /* XXX copy? */
+ resultVar->isTemp = GL_TRUE;
+
+ /* child[0] = __resultTmp declaration */
+ declOper = &commaSeq->children[0];
+ declOper->type = SLANG_OPER_VARIABLE_DECL;
+ declOper->a_id = resultVar->a_name;
+ declOper->locals->outer_scope = commaSeq->locals;
+
+ /* child[1] = function body */
+ inlined = &commaSeq->children[1];
+ inlined->locals->outer_scope = commaSeq->locals;
+
+ /* child[2] = __resultTmp reference */
+ returnOper = &commaSeq->children[2];
+ returnOper->type = SLANG_OPER_IDENTIFIER;
+ returnOper->a_id = resultVar->a_name;
+ returnOper->locals->outer_scope = commaSeq->locals;
+
+ top = commaSeq;
+ }
+ else {
+ top = inlined = slang_operation_new(1);
+ /* XXXX this may be inappropriate!!!! */
+ inlined->locals->outer_scope = oper->locals->outer_scope;
+ }
+
+
+ assert(inlined->locals);
+
+ /* Examine the parameters, look for inout/out params, look for possible
+ * substitutions, etc:
+ * param type behaviour
+ * in copy actual to local
+ * const in substitute param with actual
+ * out copy out
+ */
+ substCount = 0;
+ for (i = 0; i < totalArgs; i++) {
+ slang_variable *p = fun->parameters->variables[i];
+ /*
+ printf("Param %d: %s %s \n", i,
+ slang_type_qual_string(p->type.qualifier),
+ (char *) p->a_name);
+ */
+ if (p->type.qualifier == SLANG_QUAL_INOUT ||
+ p->type.qualifier == SLANG_QUAL_OUT) {
+ /* an output param */
+ slang_operation *arg;
+ if (i < numArgs)
+ arg = &args[i];
+ else
+ arg = returnOper;
+ paramMode[i] = SUBST;
+
+ if (arg->type == SLANG_OPER_IDENTIFIER)
+ slang_resolve_variable(arg);
+
+ /* replace parameter 'p' with argument 'arg' */
+ substOld[substCount] = p;
+ substNew[substCount] = arg; /* will get copied */
+ substCount++;
+ }
+ else if (p->type.qualifier == SLANG_QUAL_CONST) {
+ /* a constant input param */
+ if (args[i].type == SLANG_OPER_IDENTIFIER ||
+ args[i].type == SLANG_OPER_LITERAL_FLOAT ||
+ args[i].type == SLANG_OPER_SUBSCRIPT) {
+ /* replace all occurances of this parameter variable with the
+ * actual argument variable or a literal.
+ */
+ paramMode[i] = SUBST;
+ slang_resolve_variable(&args[i]);
+ substOld[substCount] = p;
+ substNew[substCount] = &args[i]; /* will get copied */
+ substCount++;
+ }
+ else {
+ paramMode[i] = COPY_IN;
+ }
+ }
+ else {
+ paramMode[i] = COPY_IN;
+ }
+ assert(paramMode[i]);
+ }
+
+ /* actual code inlining: */
+ slang_operation_copy(inlined, fun->body);
+
+ /*** XXX review this */
+ assert(inlined->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE ||
+ inlined->type == SLANG_OPER_BLOCK_NEW_SCOPE);
+ inlined->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+
+#if 0
+ printf("======================= orig body code ======================\n");
+ printf("=== params scope = %p\n", (void*) fun->parameters);
+ slang_print_tree(fun->body, 8);
+ printf("======================= copied code =========================\n");
+ slang_print_tree(inlined, 8);
+#endif
+
+ /* do parameter substitution in inlined code: */
+ slang_substitute(A, inlined, substCount, substOld, substNew, GL_FALSE);
+
+#if 0
+ printf("======================= subst code ==========================\n");
+ slang_print_tree(inlined, 8);
+ printf("=============================================================\n");
+#endif
+
+ /* New prolog statements: (inserted before the inlined code)
+ * Copy the 'in' arguments.
+ */
+ numCopyIn = 0;
+ for (i = 0; i < numArgs; i++) {
+ if (paramMode[i] == COPY_IN) {
+ slang_variable *p = fun->parameters->variables[i];
+ /* declare parameter 'p' */
+ slang_operation *decl = slang_operation_insert(&inlined->num_children,
+ &inlined->children,
+ numCopyIn);
+
+ decl->type = SLANG_OPER_VARIABLE_DECL;
+ assert(decl->locals);
+ decl->locals->outer_scope = inlined->locals;
+ decl->a_id = p->a_name;
+ decl->num_children = 1;
+ decl->children = slang_operation_new(1);
+
+ /* child[0] is the var's initializer */
+ slang_operation_copy(&decl->children[0], args + i);
+
+ /* add parameter 'p' to the local variable scope here */
+ {
+ slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
+ pCopy->type = p->type;
+ pCopy->a_name = p->a_name;
+ pCopy->array_len = p->array_len;
+ }
+
+ newScope = inlined->locals;
+ numCopyIn++;
+ }
+ }
+
+ /* Now add copies of the function's local vars to the new variable scope */
+ for (i = totalArgs; i < fun->parameters->num_variables; i++) {
+ slang_variable *p = fun->parameters->variables[i];
+ slang_variable *pCopy = slang_variable_scope_grow(inlined->locals);
+ pCopy->type = p->type;
+ pCopy->a_name = p->a_name;
+ pCopy->array_len = p->array_len;
+ }
+
+
+ /* New epilog statements:
+ * 1. Create end of function label to jump to from return statements.
+ * 2. Copy the 'out' parameter vars
+ */
+ {
+ slang_operation *lab = slang_operation_insert(&inlined->num_children,
+ &inlined->children,
+ inlined->num_children);
+ lab->type = SLANG_OPER_LABEL;
+ lab->label = A->curFuncEndLabel;
+ }
+
+ for (i = 0; i < totalArgs; i++) {
+ if (paramMode[i] == COPY_OUT) {
+ const slang_variable *p = fun->parameters->variables[i];
+ /* actualCallVar = outParam */
+ /*if (i > 0 || !haveRetValue)*/
+ slang_operation *ass = slang_operation_insert(&inlined->num_children,
+ &inlined->children,
+ inlined->num_children);
+ ass->type = SLANG_OPER_ASSIGN;
+ ass->num_children = 2;
+ ass->locals->outer_scope = inlined->locals;
+ ass->children = slang_operation_new(2);
+ ass->children[0] = args[i]; /*XXX copy */
+ ass->children[1].type = SLANG_OPER_IDENTIFIER;
+ ass->children[1].a_id = p->a_name;
+ ass->children[1].locals->outer_scope = ass->locals;
+ }
+ }
+
+ _slang_free(paramMode);
+ _slang_free(substOld);
+ _slang_free(substNew);
+
+ /* Update scoping to use the new local vars instead of the
+ * original function's vars. This is especially important
+ * for nested inlining.
+ */
+ if (newScope)
+ slang_replace_scope(inlined, fun->parameters, newScope);
+
+#if 0
+ printf("Done Inline call to %s (total vars=%d nparams=%d)\n\n",
+ (char *) fun->header.a_name,
+ fun->parameters->num_variables, numArgs);
+ slang_print_tree(top, 0);
+#endif
+
+ /* pop */
+ A->CurFunction = prevFunction;
+
+ return top;
+}
+
+
+/**
+ * Insert declaration for "bool __notRetFlag" in given block operation.
+ * This is used when we can't emit "early" return statements in subroutines.
+ */
+static void
+declare_return_flag(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_operation *decl;
+
+ assert(oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
+ oper->type == SLANG_OPER_SEQUENCE);
+
+ decl = slang_operation_insert_child(oper, 1);
+
+ slang_generate_declaration(A, oper->locals, decl,
+ SLANG_SPEC_BOOL, "__notRetFlag", GL_TRUE);
+
+ /*slang_print_tree(oper, 0);*/
+}
+
+
+/**
+ * Recursively replace instances of the old node type with the new type.
+ */
+static void
+replace_node_type(slang_operation *oper, slang_operation_type oldType,
+ slang_operation_type newType)
+{
+ GLuint i;
+
+ if (oper->type == oldType)
+ oper->type = newType;
+
+ for (i = 0; i < slang_oper_num_children(oper); i++) {
+ replace_node_type(slang_oper_child(oper, i), oldType, newType);
+ }
+}
+
+
+
+/**
+ * Test if the given function body has an "early return". That is, there's
+ * a 'return' statement that's not the very last instruction in the body.
+ */
+static GLboolean
+has_early_return(const slang_operation *funcBody)
+{
+ GLuint retCount = _slang_count_node_type(funcBody, SLANG_OPER_RETURN);
+ if (retCount == 0)
+ return GL_FALSE;
+ else if (retCount == 1 && _slang_is_tail_return(funcBody))
+ return GL_FALSE;
+ else
+ return GL_TRUE;
+}
+
+
+/**
+ * Emit IR code for a function call. This does one of two things:
+ * 1. Inline the function's code
+ * 2. Create an IR for the function's body and create a real call to it.
+ */
+static slang_ir_node *
+_slang_gen_function_call(slang_assemble_ctx *A, slang_function *fun,
+ slang_operation *oper, slang_operation *dest)
+{
+ slang_ir_node *n;
+ slang_operation *instance;
+ slang_label *prevFuncEndLabel;
+ char name[200];
+
+ prevFuncEndLabel = A->curFuncEndLabel;
+ _mesa_snprintf(name, sizeof(name), "__endOfFunc_%s_", (char *) fun->header.a_name);
+ A->curFuncEndLabel = _slang_label_new(name);
+ assert(A->curFuncEndLabel);
+
+ /*
+ * 'instance' is basically a copy of the function's body with various
+ * transformations.
+ */
+
+ if (slang_is_asm_function(fun) && !dest) {
+ /* assemble assembly function - tree style */
+ instance = slang_inline_asm_function(A, fun, oper);
+ }
+ else {
+ /* non-assembly function */
+ /* We always generate an "inline-able" block of code here.
+ * We may either:
+ * 1. insert the inline code
+ * 2. Generate a call to the "inline" code as a subroutine
+ */
+ const GLboolean earlyReturn = has_early_return(fun->body);
+
+ if (earlyReturn && !A->EmitContReturn) {
+ A->UseReturnFlag = GL_TRUE;
+ }
+
+ instance = slang_inline_function_call(A, fun, oper, dest);
+ if (!instance)
+ return NULL;
+
+ if (earlyReturn) {
+ /* The function we're calling has one or more 'return' statements
+ * that prevent us from inlining the function's code.
+ *
+ * In this case, change the function's body type from
+ * SLANG_OPER_BLOCK_NEW_SCOPE to SLANG_OPER_NON_INLINED_CALL.
+ * During code emit this will result in a true subroutine call.
+ *
+ * Also, convert SLANG_OPER_RETURN_INLINED nodes to SLANG_OPER_RETURN.
+ */
+ slang_operation *callOper;
+
+ assert(instance->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
+ instance->type == SLANG_OPER_SEQUENCE);
+
+ if (_slang_function_has_return_value(fun) && !dest) {
+ assert(instance->children[0].type == SLANG_OPER_VARIABLE_DECL);
+ assert(instance->children[2].type == SLANG_OPER_IDENTIFIER);
+ callOper = &instance->children[1];
+ }
+ else {
+ callOper = instance;
+ }
+
+ if (A->UseReturnFlag) {
+ /* Early returns not supported. Create a _returnFlag variable
+ * that's set upon 'return' and tested elsewhere to no-op any
+ * remaining instructions in the subroutine.
+ */
+ assert(callOper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
+ callOper->type == SLANG_OPER_SEQUENCE);
+ declare_return_flag(A, callOper);
+ }
+ else {
+ /* We can emit real 'return' statements. If we generated any
+ * 'inline return' statements during function instantiation,
+ * change them back to regular 'return' statements.
+ */
+ replace_node_type(instance, SLANG_OPER_RETURN_INLINED,
+ SLANG_OPER_RETURN);
+ }
+
+ callOper->type = SLANG_OPER_NON_INLINED_CALL;
+ callOper->fun = fun;
+ callOper->label = _slang_label_new_unique((char*) fun->header.a_name);
+ }
+ else {
+ /* If there are any 'return' statements remaining, they're at the
+ * very end of the function and can effectively become no-ops.
+ */
+ replace_node_type(instance, SLANG_OPER_RETURN_INLINED,
+ SLANG_OPER_VOID);
+ }
+ }
+
+ if (!instance)
+ return NULL;
+
+ /* Replace the function call with the instance block (or new CALL stmt) */
+ slang_operation_destruct(oper);
+ *oper = *instance;
+ _slang_free(instance);
+
+#if 0
+ assert(instance->locals);
+ printf("*** Inlined code for call to %s:\n", (char*) fun->header.a_name);
+ slang_print_tree(oper, 10);
+ printf("\n");
+#endif
+
+ n = _slang_gen_operation(A, oper);
+
+ /*_slang_label_delete(A->curFuncEndLabel);*/
+ A->curFuncEndLabel = prevFuncEndLabel;
+
+ if (A->pragmas->Debug) {
+ char s[1000];
+ _mesa_snprintf(s, sizeof(s), "Call/inline %s()", (char *) fun->header.a_name);
+ n->Comment = _slang_strdup(s);
+ }
+
+ A->UseReturnFlag = GL_FALSE;
+
+ return n;
+}
+
+
+static slang_asm_info *
+slang_find_asm_info(const char *name)
+{
+ GLuint i;
+ for (i = 0; AsmInfo[i].Name; i++) {
+ if (strcmp(AsmInfo[i].Name, name) == 0) {
+ return AsmInfo + i;
+ }
+ }
+ return NULL;
+}
+
+
+/**
+ * Some write-masked assignments are simple, but others are hard.
+ * Simple example:
+ * vec3 v;
+ * v.xy = vec2(a, b);
+ * Hard example:
+ * vec3 v;
+ * v.zy = vec2(a, b);
+ * this gets transformed/swizzled into:
+ * v.zy = vec2(a, b).*yx* (* = don't care)
+ * This function helps to determine simple vs. non-simple.
+ */
+static GLboolean
+_slang_simple_writemask(GLuint writemask, GLuint swizzle)
+{
+ switch (writemask) {
+ case WRITEMASK_X:
+ return GET_SWZ(swizzle, 0) == SWIZZLE_X;
+ case WRITEMASK_Y:
+ return GET_SWZ(swizzle, 1) == SWIZZLE_Y;
+ case WRITEMASK_Z:
+ return GET_SWZ(swizzle, 2) == SWIZZLE_Z;
+ case WRITEMASK_W:
+ return GET_SWZ(swizzle, 3) == SWIZZLE_W;
+ case WRITEMASK_XY:
+ return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
+ && (GET_SWZ(swizzle, 1) == SWIZZLE_Y);
+ case WRITEMASK_XYZ:
+ return (GET_SWZ(swizzle, 0) == SWIZZLE_X)
+ && (GET_SWZ(swizzle, 1) == SWIZZLE_Y)
+ && (GET_SWZ(swizzle, 2) == SWIZZLE_Z);
+ case WRITEMASK_XYZW:
+ return swizzle == SWIZZLE_NOOP;
+ default:
+ return GL_FALSE;
+ }
+}
+
+
+/**
+ * Convert the given swizzle into a writemask. In some cases this
+ * is trivial, in other cases, we'll need to also swizzle the right
+ * hand side to put components in the right places.
+ * See comment above for more info.
+ * XXX this function could be simplified and should probably be renamed.
+ * \param swizzle the incoming swizzle
+ * \param writemaskOut returns the writemask
+ * \param swizzleOut swizzle to apply to the right-hand-side
+ * \return GL_FALSE for simple writemasks, GL_TRUE for non-simple
+ */
+static GLboolean
+swizzle_to_writemask(slang_assemble_ctx *A, GLuint swizzle,
+ GLuint *writemaskOut, GLuint *swizzleOut)
+{
+ GLuint mask = 0x0, newSwizzle[4];
+ GLint i, size;
+
+ /* make new dst writemask, compute size */
+ for (i = 0; i < 4; i++) {
+ const GLuint swz = GET_SWZ(swizzle, i);
+ if (swz == SWIZZLE_NIL) {
+ /* end */
+ break;
+ }
+ assert(swz <= 3);
+
+ if (swizzle != SWIZZLE_XXXX &&
+ swizzle != SWIZZLE_YYYY &&
+ swizzle != SWIZZLE_ZZZZ &&
+ swizzle != SWIZZLE_WWWW &&
+ (mask & (1 << swz))) {
+ /* a channel can't be specified twice (ex: ".xyyz") */
+ slang_info_log_error(A->log, "Invalid writemask '%s'",
+ _mesa_swizzle_string(swizzle, 0, 0));
+ return GL_FALSE;
+ }
+
+ mask |= (1 << swz);
+ }
+ assert(mask <= 0xf);
+ size = i; /* number of components in mask/swizzle */
+
+ *writemaskOut = mask;
+
+ /* make new src swizzle, by inversion */
+ for (i = 0; i < 4; i++) {
+ newSwizzle[i] = i; /*identity*/
+ }
+ for (i = 0; i < size; i++) {
+ const GLuint swz = GET_SWZ(swizzle, i);
+ newSwizzle[swz] = i;
+ }
+ *swizzleOut = MAKE_SWIZZLE4(newSwizzle[0],
+ newSwizzle[1],
+ newSwizzle[2],
+ newSwizzle[3]);
+
+ if (_slang_simple_writemask(mask, *swizzleOut)) {
+ if (size >= 1)
+ assert(GET_SWZ(*swizzleOut, 0) == SWIZZLE_X);
+ if (size >= 2)
+ assert(GET_SWZ(*swizzleOut, 1) == SWIZZLE_Y);
+ if (size >= 3)
+ assert(GET_SWZ(*swizzleOut, 2) == SWIZZLE_Z);
+ if (size >= 4)
+ assert(GET_SWZ(*swizzleOut, 3) == SWIZZLE_W);
+ return GL_TRUE;
+ }
+ else
+ return GL_FALSE;
+}
+
+
+#if 0 /* not used, but don't remove just yet */
+/**
+ * Recursively traverse 'oper' to produce a swizzle mask in the event
+ * of any vector subscripts and swizzle suffixes.
+ * Ex: for "vec4 v", "v[2].x" resolves to v.z
+ */
+static GLuint
+resolve_swizzle(const slang_operation *oper)
+{
+ if (oper->type == SLANG_OPER_FIELD) {
+ /* writemask from .xyzw suffix */
+ slang_swizzle swz;
+ if (_slang_is_swizzle((char*) oper->a_id, 4, &swz)) {
+ GLuint swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
+ swz.swizzle[1],
+ swz.swizzle[2],
+ swz.swizzle[3]);
+ GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
+ GLuint s = _slang_swizzle_swizzle(child_swizzle, swizzle);
+ return s;
+ }
+ else
+ return SWIZZLE_XYZW;
+ }
+ else if (oper->type == SLANG_OPER_SUBSCRIPT &&
+ oper->children[1].type == SLANG_OPER_LITERAL_INT) {
+ /* writemask from [index] */
+ GLuint child_swizzle = resolve_swizzle(&oper->children[0]);
+ GLuint i = (GLuint) oper->children[1].literal[0];
+ GLuint swizzle;
+ GLuint s;
+ switch (i) {
+ case 0:
+ swizzle = SWIZZLE_XXXX;
+ break;
+ case 1:
+ swizzle = SWIZZLE_YYYY;
+ break;
+ case 2:
+ swizzle = SWIZZLE_ZZZZ;
+ break;
+ case 3:
+ swizzle = SWIZZLE_WWWW;
+ break;
+ default:
+ swizzle = SWIZZLE_XYZW;
+ }
+ s = _slang_swizzle_swizzle(child_swizzle, swizzle);
+ return s;
+ }
+ else {
+ return SWIZZLE_XYZW;
+ }
+}
+#endif
+
+
+#if 0
+/**
+ * Recursively descend through swizzle nodes to find the node's storage info.
+ */
+static slang_ir_storage *
+get_store(const slang_ir_node *n)
+{
+ if (n->Opcode == IR_SWIZZLE) {
+ return get_store(n->Children[0]);
+ }
+ return n->Store;
+}
+#endif
+
+
+/**
+ * Generate IR tree for an asm instruction/operation such as:
+ * __asm vec4_dot __retVal.x, v1, v2;
+ */
+static slang_ir_node *
+_slang_gen_asm(slang_assemble_ctx *A, slang_operation *oper,
+ slang_operation *dest)
+{
+ const slang_asm_info *info;
+ slang_ir_node *kids[3], *n;
+ GLuint j, firstOperand;
+
+ assert(oper->type == SLANG_OPER_ASM);
+
+ info = slang_find_asm_info((char *) oper->a_id);
+ if (!info) {
+ _mesa_problem(NULL, "undefined __asm function %s\n",
+ (char *) oper->a_id);
+ assert(info);
+ return NULL;
+ }
+ assert(info->NumParams <= 3);
+
+ if (info->NumParams == oper->num_children) {
+ /* Storage for result is not specified.
+ * Children[0], [1], [2] are the operands.
+ */
+ firstOperand = 0;
+ }
+ else {
+ /* Storage for result (child[0]) is specified.
+ * Children[1], [2], [3] are the operands.
+ */
+ firstOperand = 1;
+ }
+
+ /* assemble child(ren) */
+ kids[0] = kids[1] = kids[2] = NULL;
+ for (j = 0; j < info->NumParams; j++) {
+ kids[j] = _slang_gen_operation(A, &oper->children[firstOperand + j]);
+ if (!kids[j])
+ return NULL;
+ }
+
+ n = new_node3(info->Opcode, kids[0], kids[1], kids[2]);
+
+ if (firstOperand) {
+ /* Setup n->Store to be a particular location. Otherwise, storage
+ * for the result (a temporary) will be allocated later.
+ */
+ slang_operation *dest_oper;
+ slang_ir_node *n0;
+
+ dest_oper = &oper->children[0];
+
+ n0 = _slang_gen_operation(A, dest_oper);
+ if (!n0)
+ return NULL;
+
+ assert(!n->Store);
+ n->Store = n0->Store;
+
+ assert(n->Store->File != PROGRAM_UNDEFINED || n->Store->Parent);
+
+ _slang_free(n0);
+ }
+
+ return n;
+}
+
+
+#if 0
+static void
+print_funcs(struct slang_function_scope_ *scope, const char *name)
+{
+ GLuint i;
+ for (i = 0; i < scope->num_functions; i++) {
+ slang_function *f = &scope->functions[i];
+ if (!name || strcmp(name, (char*) f->header.a_name) == 0)
+ printf(" %s (%d args)\n", name, f->param_count);
+
+ }
+ if (scope->outer_scope)
+ print_funcs(scope->outer_scope, name);
+}
+#endif
+
+
+/**
+ * Find a function of the given name, taking 'numArgs' arguments.
+ * This is the function we'll try to call when there is no exact match
+ * between function parameters and call arguments.
+ *
+ * XXX we should really create a list of candidate functions and try
+ * all of them...
+ */
+static slang_function *
+_slang_find_function_by_argc(slang_function_scope *scope,
+ const char *name, int numArgs)
+{
+ while (scope) {
+ GLuint i;
+ for (i = 0; i < scope->num_functions; i++) {
+ slang_function *f = &scope->functions[i];
+ if (strcmp(name, (char*) f->header.a_name) == 0) {
+ int haveRetValue = _slang_function_has_return_value(f);
+ if (numArgs == f->param_count - haveRetValue)
+ return f;
+ }
+ }
+ scope = scope->outer_scope;
+ }
+
+ return NULL;
+}
+
+
+static slang_function *
+_slang_find_function_by_max_argc(slang_function_scope *scope,
+ const char *name)
+{
+ slang_function *maxFunc = NULL;
+ GLuint maxArgs = 0;
+
+ while (scope) {
+ GLuint i;
+ for (i = 0; i < scope->num_functions; i++) {
+ slang_function *f = &scope->functions[i];
+ if (strcmp(name, (char*) f->header.a_name) == 0) {
+ if (f->param_count > maxArgs) {
+ maxArgs = f->param_count;
+ maxFunc = f;
+ }
+ }
+ }
+ scope = scope->outer_scope;
+ }
+
+ return maxFunc;
+}
+
+
+/**
+ * Generate a new slang_function which is a constructor for a user-defined
+ * struct type.
+ */
+static slang_function *
+_slang_make_struct_constructor(slang_assemble_ctx *A, slang_struct *str)
+{
+ const GLint numFields = str->fields->num_variables;
+ slang_function *fun = slang_function_new(SLANG_FUNC_CONSTRUCTOR);
+
+ /* function header (name, return type) */
+ fun->header.a_name = str->a_name;
+ fun->header.type.qualifier = SLANG_QUAL_NONE;
+ fun->header.type.specifier.type = SLANG_SPEC_STRUCT;
+ fun->header.type.specifier._struct = str;
+
+ /* function parameters (= struct's fields) */
+ {
+ GLint i;
+ for (i = 0; i < numFields; i++) {
+ /*
+ printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
+ */
+ slang_variable *p = slang_variable_scope_grow(fun->parameters);
+ *p = *str->fields->variables[i]; /* copy the variable and type */
+ p->type.qualifier = SLANG_QUAL_CONST;
+ }
+ fun->param_count = fun->parameters->num_variables;
+ }
+
+ /* Add __retVal to params */
+ {
+ slang_variable *p = slang_variable_scope_grow(fun->parameters);
+ slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
+ assert(a_retVal);
+ p->a_name = a_retVal;
+ p->type = fun->header.type;
+ p->type.qualifier = SLANG_QUAL_OUT;
+ fun->param_count++;
+ }
+
+ /* function body is:
+ * block:
+ * declare T;
+ * T.f1 = p1;
+ * T.f2 = p2;
+ * ...
+ * T.fn = pn;
+ * return T;
+ */
+ {
+ slang_variable_scope *scope;
+ slang_variable *var;
+ GLint i;
+
+ fun->body = slang_operation_new(1);
+ fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+ fun->body->num_children = numFields + 2;
+ fun->body->children = slang_operation_new(numFields + 2);
+
+ scope = fun->body->locals;
+ scope->outer_scope = fun->parameters;
+
+ /* create local var 't' */
+ var = slang_variable_scope_grow(scope);
+ var->a_name = slang_atom_pool_atom(A->atoms, "t");
+ var->type = fun->header.type;
+
+ /* declare t */
+ {
+ slang_operation *decl;
+
+ decl = &fun->body->children[0];
+ decl->type = SLANG_OPER_VARIABLE_DECL;
+ decl->locals = _slang_variable_scope_new(scope);
+ decl->a_id = var->a_name;
+ }
+
+ /* assign params to fields of t */
+ for (i = 0; i < numFields; i++) {
+ slang_operation *assign = &fun->body->children[1 + i];
+
+ assign->type = SLANG_OPER_ASSIGN;
+ assign->locals = _slang_variable_scope_new(scope);
+ assign->num_children = 2;
+ assign->children = slang_operation_new(2);
+
+ {
+ slang_operation *lhs = &assign->children[0];
+
+ lhs->type = SLANG_OPER_FIELD;
+ lhs->locals = _slang_variable_scope_new(scope);
+ lhs->num_children = 1;
+ lhs->children = slang_operation_new(1);
+ lhs->a_id = str->fields->variables[i]->a_name;
+
+ lhs->children[0].type = SLANG_OPER_IDENTIFIER;
+ lhs->children[0].a_id = var->a_name;
+ lhs->children[0].locals = _slang_variable_scope_new(scope);
+
+#if 0
+ lhs->children[1].num_children = 1;
+ lhs->children[1].children = slang_operation_new(1);
+ lhs->children[1].children[0].type = SLANG_OPER_IDENTIFIER;
+ lhs->children[1].children[0].a_id = str->fields->variables[i]->a_name;
+ lhs->children[1].children->locals = _slang_variable_scope_new(scope);
+#endif
+ }
+
+ {
+ slang_operation *rhs = &assign->children[1];
+
+ rhs->type = SLANG_OPER_IDENTIFIER;
+ rhs->locals = _slang_variable_scope_new(scope);
+ rhs->a_id = str->fields->variables[i]->a_name;
+ }
+ }
+
+ /* return t; */
+ {
+ slang_operation *ret = &fun->body->children[numFields + 1];
+
+ ret->type = SLANG_OPER_RETURN;
+ ret->locals = _slang_variable_scope_new(scope);
+ ret->num_children = 1;
+ ret->children = slang_operation_new(1);
+ ret->children[0].type = SLANG_OPER_IDENTIFIER;
+ ret->children[0].a_id = var->a_name;
+ ret->children[0].locals = _slang_variable_scope_new(scope);
+ }
+ }
+ /*
+ slang_print_function(fun, 1);
+ */
+ return fun;
+}
+
+
+/**
+ * Find/create a function (constructor) for the given structure name.
+ */
+static slang_function *
+_slang_locate_struct_constructor(slang_assemble_ctx *A, const char *name)
+{
+ unsigned int i;
+ for (i = 0; i < A->space.structs->num_structs; i++) {
+ slang_struct *str = &A->space.structs->structs[i];
+ if (strcmp(name, (const char *) str->a_name) == 0) {
+ /* found a structure type that matches the function name */
+ if (!str->constructor) {
+ /* create the constructor function now */
+ str->constructor = _slang_make_struct_constructor(A, str);
+ }
+ return str->constructor;
+ }
+ }
+ return NULL;
+}
+
+
+/**
+ * Generate a new slang_function to satisfy a call to an array constructor.
+ * Ex: float[3](1., 2., 3.)
+ */
+static slang_function *
+_slang_make_array_constructor(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_type_specifier_type baseType;
+ slang_function *fun;
+ int num_elements;
+
+ fun = slang_function_new(SLANG_FUNC_CONSTRUCTOR);
+ if (!fun)
+ return NULL;
+
+ baseType = slang_type_specifier_type_from_string((char *) oper->a_id);
+
+ num_elements = oper->num_children;
+
+ /* function header, return type */
+ {
+ fun->header.a_name = oper->a_id;
+ fun->header.type.qualifier = SLANG_QUAL_NONE;
+ fun->header.type.specifier.type = SLANG_SPEC_ARRAY;
+ fun->header.type.specifier._array =
+ slang_type_specifier_new(baseType, NULL, NULL);
+ fun->header.type.array_len = num_elements;
+ }
+
+ /* function parameters (= number of elements) */
+ {
+ GLint i;
+ for (i = 0; i < num_elements; i++) {
+ /*
+ printf("Field %d: %s\n", i, (char*) str->fields->variables[i]->a_name);
+ */
+ slang_variable *p = slang_variable_scope_grow(fun->parameters);
+ char name[10];
+ _mesa_snprintf(name, sizeof(name), "p%d", i);
+ p->a_name = slang_atom_pool_atom(A->atoms, name);
+ p->type.qualifier = SLANG_QUAL_CONST;
+ p->type.specifier.type = baseType;
+ }
+ fun->param_count = fun->parameters->num_variables;
+ }
+
+ /* Add __retVal to params */
+ {
+ slang_variable *p = slang_variable_scope_grow(fun->parameters);
+ slang_atom a_retVal = slang_atom_pool_atom(A->atoms, "__retVal");
+ assert(a_retVal);
+ p->a_name = a_retVal;
+ p->type = fun->header.type;
+ p->type.qualifier = SLANG_QUAL_OUT;
+ p->type.specifier.type = baseType;
+ fun->param_count++;
+ }
+
+ /* function body is:
+ * block:
+ * declare T;
+ * T[0] = p0;
+ * T[1] = p1;
+ * ...
+ * T[n] = pn;
+ * return T;
+ */
+ {
+ slang_variable_scope *scope;
+ slang_variable *var;
+ GLint i;
+
+ fun->body = slang_operation_new(1);
+ fun->body->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+ fun->body->num_children = num_elements + 2;
+ fun->body->children = slang_operation_new(num_elements + 2);
+
+ scope = fun->body->locals;
+ scope->outer_scope = fun->parameters;
+
+ /* create local var 't' */
+ var = slang_variable_scope_grow(scope);
+ var->a_name = slang_atom_pool_atom(A->atoms, "ttt");
+ var->type = fun->header.type;/*XXX copy*/
+
+ /* declare t */
+ {
+ slang_operation *decl;
+
+ decl = &fun->body->children[0];
+ decl->type = SLANG_OPER_VARIABLE_DECL;
+ decl->locals = _slang_variable_scope_new(scope);
+ decl->a_id = var->a_name;
+ }
+
+ /* assign params to elements of t */
+ for (i = 0; i < num_elements; i++) {
+ slang_operation *assign = &fun->body->children[1 + i];
+
+ assign->type = SLANG_OPER_ASSIGN;
+ assign->locals = _slang_variable_scope_new(scope);
+ assign->num_children = 2;
+ assign->children = slang_operation_new(2);
+
+ {
+ slang_operation *lhs = &assign->children[0];
+
+ lhs->type = SLANG_OPER_SUBSCRIPT;
+ lhs->locals = _slang_variable_scope_new(scope);
+ lhs->num_children = 2;
+ lhs->children = slang_operation_new(2);
+
+ lhs->children[0].type = SLANG_OPER_IDENTIFIER;
+ lhs->children[0].a_id = var->a_name;
+ lhs->children[0].locals = _slang_variable_scope_new(scope);
+
+ lhs->children[1].type = SLANG_OPER_LITERAL_INT;
+ lhs->children[1].literal[0] = (GLfloat) i;
+ }
+
+ {
+ slang_operation *rhs = &assign->children[1];
+
+ rhs->type = SLANG_OPER_IDENTIFIER;
+ rhs->locals = _slang_variable_scope_new(scope);
+ rhs->a_id = fun->parameters->variables[i]->a_name;
+ }
+ }
+
+ /* return t; */
+ {
+ slang_operation *ret = &fun->body->children[num_elements + 1];
+
+ ret->type = SLANG_OPER_RETURN;
+ ret->locals = _slang_variable_scope_new(scope);
+ ret->num_children = 1;
+ ret->children = slang_operation_new(1);
+ ret->children[0].type = SLANG_OPER_IDENTIFIER;
+ ret->children[0].a_id = var->a_name;
+ ret->children[0].locals = _slang_variable_scope_new(scope);
+ }
+ }
+
+ /*
+ slang_print_function(fun, 1);
+ */
+
+ return fun;
+}
+
+
+static GLboolean
+_slang_is_vec_mat_type(const char *name)
+{
+ static const char *vecmat_types[] = {
+ "float", "int", "bool",
+ "vec2", "vec3", "vec4",
+ "ivec2", "ivec3", "ivec4",
+ "bvec2", "bvec3", "bvec4",
+ "mat2", "mat3", "mat4",
+ "mat2x3", "mat2x4", "mat3x2", "mat3x4", "mat4x2", "mat4x3",
+ NULL
+ };
+ int i;
+ for (i = 0; vecmat_types[i]; i++)
+ if (strcmp(name, vecmat_types[i]) == 0)
+ return GL_TRUE;
+ return GL_FALSE;
+}
+
+
+/**
+ * Assemble a function call, given a particular function name.
+ * \param name the function's name (operators like '*' are possible).
+ */
+static slang_ir_node *
+_slang_gen_function_call_name(slang_assemble_ctx *A, const char *name,
+ slang_operation *oper, slang_operation *dest)
+{
+ slang_operation *params = oper->children;
+ const GLuint param_count = oper->num_children;
+ slang_atom atom;
+ slang_function *fun;
+ slang_ir_node *n;
+
+ atom = slang_atom_pool_atom(A->atoms, name);
+ if (atom == SLANG_ATOM_NULL)
+ return NULL;
+
+ if (oper->array_constructor) {
+ /* this needs special handling */
+ fun = _slang_make_array_constructor(A, oper);
+ }
+ else {
+ /* Try to find function by name and exact argument type matching */
+ GLboolean error = GL_FALSE;
+ fun = _slang_function_locate(A->space.funcs, atom, params, param_count,
+ &A->space, A->atoms, A->log, &error);
+ if (error) {
+ slang_info_log_error(A->log,
+ "Function '%s' not found (check argument types)",
+ name);
+ return NULL;
+ }
+ }
+
+ if (!fun) {
+ /* Next, try locating a constructor function for a user-defined type */
+ fun = _slang_locate_struct_constructor(A, name);
+ }
+
+ /*
+ * At this point, some heuristics are used to try to find a function
+ * that matches the calling signature by means of casting or "unrolling"
+ * of constructors.
+ */
+
+ if (!fun && _slang_is_vec_mat_type(name)) {
+ /* Next, if this call looks like a vec() or mat() constructor call,
+ * try "unwinding" the args to satisfy a constructor.
+ */
+ fun = _slang_find_function_by_max_argc(A->space.funcs, name);
+ if (fun) {
+ if (!_slang_adapt_call(oper, fun, &A->space, A->atoms, A->log)) {
+ slang_info_log_error(A->log,
+ "Function '%s' not found (check argument types)",
+ name);
+ return NULL;
+ }
+ }
+ }
+
+ if (!fun && _slang_is_vec_mat_type(name)) {
+ /* Next, try casting args to the types of the formal parameters */
+ int numArgs = oper->num_children;
+ fun = _slang_find_function_by_argc(A->space.funcs, name, numArgs);
+ if (!fun || !_slang_cast_func_params(oper, fun, &A->space, A->atoms, A->log)) {
+ slang_info_log_error(A->log,
+ "Function '%s' not found (check argument types)",
+ name);
+ return NULL;
+ }
+ assert(fun);
+ }
+
+ if (!fun) {
+ slang_info_log_error(A->log,
+ "Function '%s' not found (check argument types)",
+ name);
+ return NULL;
+ }
+
+ if (!fun->body) {
+ /* The function body may be in another compilation unit.
+ * We'll try concatenating the shaders and recompile at link time.
+ */
+ A->UnresolvedRefs = GL_TRUE;
+ return new_node1(IR_NOP, NULL);
+ }
+
+ /* type checking to be sure function's return type matches 'dest' type */
+ if (dest) {
+ slang_typeinfo t0;
+
+ slang_typeinfo_construct(&t0);
+ typeof_operation(A, dest, &t0);
+
+ if (!slang_type_specifier_equal(&t0.spec, &fun->header.type.specifier)) {
+ slang_info_log_error(A->log,
+ "Incompatible type returned by call to '%s'",
+ name);
+ return NULL;
+ }
+ }
+
+ n = _slang_gen_function_call(A, fun, oper, dest);
+
+ if (n && !n->Store && !dest
+ && fun->header.type.specifier.type != SLANG_SPEC_VOID) {
+ /* setup n->Store for the result of the function call */
+ GLint size = _slang_sizeof_type_specifier(&fun->header.type.specifier);
+ n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, size);
+ /*printf("Alloc storage for function result, size %d \n", size);*/
+ }
+
+ if (oper->array_constructor) {
+ /* free the temporary array constructor function now */
+ slang_function_destruct(fun);
+ }
+
+ return n;
+}
+
+
+static slang_ir_node *
+_slang_gen_method_call(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_atom *a_length = slang_atom_pool_atom(A->atoms, "length");
+ slang_ir_node *n;
+ slang_variable *var;
+
+ /* NOTE: In GLSL 1.20, there's only one kind of method
+ * call: array.length(). Anything else is an error.
+ */
+ if (oper->a_id != a_length) {
+ slang_info_log_error(A->log,
+ "Undefined method call '%s'", (char *) oper->a_id);
+ return NULL;
+ }
+
+ /* length() takes no arguments */
+ if (oper->num_children > 0) {
+ slang_info_log_error(A->log, "Invalid arguments to length() method");
+ return NULL;
+ }
+
+ /* lookup the object/variable */
+ var = _slang_variable_locate(oper->locals, oper->a_obj, GL_TRUE);
+ if (!var || var->type.specifier.type != SLANG_SPEC_ARRAY) {
+ slang_info_log_error(A->log,
+ "Undefined object '%s'", (char *) oper->a_obj);
+ return NULL;
+ }
+
+ /* Create a float/literal IR node encoding the array length */
+ n = new_node0(IR_FLOAT);
+ if (n) {
+ n->Value[0] = (float) _slang_array_length(var);
+ n->Store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, 1);
+ }
+ return n;
+}
+
+
+static GLboolean
+_slang_is_constant_cond(const slang_operation *oper, GLboolean *value)
+{
+ if (oper->type == SLANG_OPER_LITERAL_FLOAT ||
+ oper->type == SLANG_OPER_LITERAL_INT ||
+ oper->type == SLANG_OPER_LITERAL_BOOL) {
+ if (oper->literal[0])
+ *value = GL_TRUE;
+ else
+ *value = GL_FALSE;
+ return GL_TRUE;
+ }
+ else if (oper->type == SLANG_OPER_EXPRESSION &&
+ oper->num_children == 1) {
+ return _slang_is_constant_cond(&oper->children[0], value);
+ }
+ return GL_FALSE;
+}
+
+
+/**
+ * Test if an operation is a scalar or boolean.
+ */
+static GLboolean
+_slang_is_scalar_or_boolean(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_typeinfo type;
+ GLint size;
+
+ slang_typeinfo_construct(&type);
+ typeof_operation(A, oper, &type);
+ size = _slang_sizeof_type_specifier(&type.spec);
+ slang_typeinfo_destruct(&type);
+ return size == 1;
+}
+
+
+/**
+ * Test if an operation is boolean.
+ */
+static GLboolean
+_slang_is_boolean(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_typeinfo type;
+ GLboolean isBool;
+
+ slang_typeinfo_construct(&type);
+ typeof_operation(A, oper, &type);
+ isBool = (type.spec.type == SLANG_SPEC_BOOL);
+ slang_typeinfo_destruct(&type);
+ return isBool;
+}
+
+
+/**
+ * Check if a loop contains a 'continue' statement.
+ * Stop looking if we find a nested loop.
+ */
+static GLboolean
+_slang_loop_contains_continue(const slang_operation *oper)
+{
+ switch (oper->type) {
+ case SLANG_OPER_CONTINUE:
+ return GL_TRUE;
+ case SLANG_OPER_FOR:
+ case SLANG_OPER_DO:
+ case SLANG_OPER_WHILE:
+ /* stop upon finding a nested loop */
+ return GL_FALSE;
+ default:
+ /* recurse */
+ {
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++) {
+ const slang_operation *child = slang_oper_child_const(oper, i);
+ if (_slang_loop_contains_continue(child))
+ return GL_TRUE;
+ }
+ }
+ return GL_FALSE;
+ }
+}
+
+
+/**
+ * Check if a loop contains a 'continue' or 'break' statement.
+ * Stop looking if we find a nested loop.
+ */
+static GLboolean
+_slang_loop_contains_continue_or_break(const slang_operation *oper)
+{
+ switch (oper->type) {
+ case SLANG_OPER_CONTINUE:
+ case SLANG_OPER_BREAK:
+ return GL_TRUE;
+ case SLANG_OPER_FOR:
+ case SLANG_OPER_DO:
+ case SLANG_OPER_WHILE:
+ /* stop upon finding a nested loop */
+ return GL_FALSE;
+ default:
+ /* recurse */
+ {
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++) {
+ const slang_operation *child = slang_oper_child_const(oper, i);
+ if (_slang_loop_contains_continue_or_break(child))
+ return GL_TRUE;
+ }
+ }
+ return GL_FALSE;
+ }
+}
+
+
+/**
+ * Replace 'break' and 'continue' statements inside a do and while loops.
+ * This is a recursive helper function used by
+ * _slang_gen_do/while_without_continue().
+ */
+static void
+replace_break_and_cont(slang_assemble_ctx *A, slang_operation *oper)
+{
+ switch (oper->type) {
+ case SLANG_OPER_BREAK:
+ /* replace 'break' with "_notBreakFlag = false; break" */
+ {
+ slang_operation *block = oper;
+ block->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+ slang_operation_add_children(block, 2);
+ {
+ slang_operation *assign = slang_oper_child(block, 0);
+ assign->type = SLANG_OPER_ASSIGN;
+ slang_operation_add_children(assign, 2);
+ {
+ slang_operation *lhs = slang_oper_child(assign, 0);
+ slang_operation_identifier(lhs, A, "_notBreakFlag");
+ }
+ {
+ slang_operation *rhs = slang_oper_child(assign, 1);
+ slang_operation_literal_bool(rhs, GL_FALSE);
+ }
+ }
+ {
+ slang_operation *brk = slang_oper_child(block, 1);
+ brk->type = SLANG_OPER_BREAK;
+ assert(!brk->children);
+ }
+ }
+ break;
+ case SLANG_OPER_CONTINUE:
+ /* convert continue into a break */
+ oper->type = SLANG_OPER_BREAK;
+ break;
+ case SLANG_OPER_FOR:
+ case SLANG_OPER_DO:
+ case SLANG_OPER_WHILE:
+ /* stop upon finding a nested loop */
+ break;
+ default:
+ /* recurse */
+ {
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++) {
+ replace_break_and_cont(A, slang_oper_child(oper, i));
+ }
+ }
+ }
+}
+
+
+/**
+ * Transform a while-loop so that continue statements are converted to breaks.
+ * Then do normal IR code generation.
+ *
+ * Before:
+ *
+ * while (LOOPCOND) {
+ * A;
+ * if (IFCOND)
+ * continue;
+ * B;
+ * break;
+ * C;
+ * }
+ *
+ * After:
+ *
+ * {
+ * bool _notBreakFlag = 1;
+ * while (_notBreakFlag && LOOPCOND) {
+ * do {
+ * A;
+ * if (IFCOND) {
+ * break; // was continue
+ * }
+ * B;
+ * _notBreakFlag = 0; // was
+ * break; // break
+ * C;
+ * } while (0)
+ * }
+ * }
+ */
+static slang_ir_node *
+_slang_gen_while_without_continue(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_operation *top;
+ slang_operation *innerBody;
+
+ assert(oper->type == SLANG_OPER_WHILE);
+
+ top = slang_operation_new(1);
+ top->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+ top->locals->outer_scope = oper->locals->outer_scope;
+ slang_operation_add_children(top, 2);
+
+ /* declare: bool _notBreakFlag = true */
+ {
+ slang_operation *condDecl = slang_oper_child(top, 0);
+ slang_generate_declaration(A, top->locals, condDecl,
+ SLANG_SPEC_BOOL, "_notBreakFlag", GL_TRUE);
+ }
+
+ /* build outer while-loop: while (_notBreakFlag && LOOPCOND) { ... } */
+ {
+ slang_operation *outerWhile = slang_oper_child(top, 1);
+ outerWhile->type = SLANG_OPER_WHILE;
+ slang_operation_add_children(outerWhile, 2);
+
+ /* _notBreakFlag && LOOPCOND */
+ {
+ slang_operation *cond = slang_oper_child(outerWhile, 0);
+ cond->type = SLANG_OPER_LOGICALAND;
+ slang_operation_add_children(cond, 2);
+ {
+ slang_operation *notBreak = slang_oper_child(cond, 0);
+ slang_operation_identifier(notBreak, A, "_notBreakFlag");
+ }
+ {
+ slang_operation *origCond = slang_oper_child(cond, 1);
+ slang_operation_copy(origCond, slang_oper_child(oper, 0));
+ }
+ }
+
+ /* inner loop */
+ {
+ slang_operation *innerDo = slang_oper_child(outerWhile, 1);
+ innerDo->type = SLANG_OPER_DO;
+ slang_operation_add_children(innerDo, 2);
+
+ /* copy original do-loop body into inner do-loop's body */
+ innerBody = slang_oper_child(innerDo, 0);
+ slang_operation_copy(innerBody, slang_oper_child(oper, 1));
+ innerBody->locals->outer_scope = innerDo->locals;
+
+ /* inner do-loop's condition is constant/false */
+ {
+ slang_operation *constFalse = slang_oper_child(innerDo, 1);
+ slang_operation_literal_bool(constFalse, GL_FALSE);
+ }
+ }
+ }
+
+ /* Finally, in innerBody,
+ * replace "break" with "_notBreakFlag = 0; break"
+ * replace "continue" with "break"
+ */
+ replace_break_and_cont(A, innerBody);
+
+ /*slang_print_tree(top, 0);*/
+
+ return _slang_gen_operation(A, top);
+
+ return NULL;
+}
+
+
+/**
+ * Generate loop code using high-level IR_LOOP instruction
+ */
+static slang_ir_node *
+_slang_gen_while(slang_assemble_ctx * A, slang_operation *oper)
+{
+ /*
+ * LOOP:
+ * BREAK if !expr (child[0])
+ * body code (child[1])
+ */
+ slang_ir_node *loop, *breakIf, *body;
+ GLboolean isConst, constTrue = GL_FALSE;
+
+ if (!A->EmitContReturn) {
+ /* We don't want to emit CONT instructions. If this while-loop has
+ * a continue, translate it away.
+ */
+ if (_slang_loop_contains_continue(slang_oper_child(oper, 1))) {
+ return _slang_gen_while_without_continue(A, oper);
+ }
+ }
+
+ /* type-check expression */
+ if (!_slang_is_boolean(A, &oper->children[0])) {
+ slang_info_log_error(A->log, "scalar/boolean expression expected for 'while'");
+ return NULL;
+ }
+
+ /* Check if loop condition is a constant */
+ isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
+
+ if (isConst && !constTrue) {
+ /* loop is never executed! */
+ return new_node0(IR_NOP);
+ }
+
+ /* Begin new loop */
+ loop = new_loop(NULL);
+
+ /* save loop state */
+ push_loop(A, oper, loop);
+
+ if (isConst && constTrue) {
+ /* while(nonzero constant), no conditional break */
+ breakIf = NULL;
+ }
+ else {
+ slang_ir_node *cond
+ = new_cond(new_not(_slang_gen_operation(A, &oper->children[0])));
+ breakIf = new_break_if_true(A, cond);
+ }
+ body = _slang_gen_operation(A, &oper->children[1]);
+ loop->Children[0] = new_seq(breakIf, body);
+
+ /* Do infinite loop detection */
+ /* loop->List is head of linked list of break/continue nodes */
+ if (!loop->List && isConst && constTrue) {
+ /* infinite loop detected */
+ pop_loop(A);
+ slang_info_log_error(A->log, "Infinite loop detected!");
+ return NULL;
+ }
+
+ /* restore loop state */
+ pop_loop(A);
+
+ return loop;
+}
+
+
+/**
+ * Transform a do-while-loop so that continue statements are converted to breaks.
+ * Then do normal IR code generation.
+ *
+ * Before:
+ *
+ * do {
+ * A;
+ * if (IFCOND)
+ * continue;
+ * B;
+ * break;
+ * C;
+ * } while (LOOPCOND);
+ *
+ * After:
+ *
+ * {
+ * bool _notBreakFlag = 1;
+ * do {
+ * do {
+ * A;
+ * if (IFCOND) {
+ * break; // was continue
+ * }
+ * B;
+ * _notBreakFlag = 0; // was
+ * break; // break
+ * C;
+ * } while (0)
+ * } while (_notBreakFlag && LOOPCOND);
+ * }
+ */
+static slang_ir_node *
+_slang_gen_do_without_continue(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_operation *top;
+ slang_operation *innerBody;
+
+ assert(oper->type == SLANG_OPER_DO);
+
+ top = slang_operation_new(1);
+ top->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+ top->locals->outer_scope = oper->locals->outer_scope;
+ slang_operation_add_children(top, 2);
+
+ /* declare: bool _notBreakFlag = true */
+ {
+ slang_operation *condDecl = slang_oper_child(top, 0);
+ slang_generate_declaration(A, top->locals, condDecl,
+ SLANG_SPEC_BOOL, "_notBreakFlag", GL_TRUE);
+ }
+
+ /* build outer do-loop: do { ... } while (_notBreakFlag && LOOPCOND) */
+ {
+ slang_operation *outerDo = slang_oper_child(top, 1);
+ outerDo->type = SLANG_OPER_DO;
+ slang_operation_add_children(outerDo, 2);
+
+ /* inner do-loop */
+ {
+ slang_operation *innerDo = slang_oper_child(outerDo, 0);
+ innerDo->type = SLANG_OPER_DO;
+ slang_operation_add_children(innerDo, 2);
+
+ /* copy original do-loop body into inner do-loop's body */
+ innerBody = slang_oper_child(innerDo, 0);
+ slang_operation_copy(innerBody, slang_oper_child(oper, 0));
+ innerBody->locals->outer_scope = innerDo->locals;
+
+ /* inner do-loop's condition is constant/false */
+ {
+ slang_operation *constFalse = slang_oper_child(innerDo, 1);
+ slang_operation_literal_bool(constFalse, GL_FALSE);
+ }
+ }
+
+ /* _notBreakFlag && LOOPCOND */
+ {
+ slang_operation *cond = slang_oper_child(outerDo, 1);
+ cond->type = SLANG_OPER_LOGICALAND;
+ slang_operation_add_children(cond, 2);
+ {
+ slang_operation *notBreak = slang_oper_child(cond, 0);
+ slang_operation_identifier(notBreak, A, "_notBreakFlag");
+ }
+ {
+ slang_operation *origCond = slang_oper_child(cond, 1);
+ slang_operation_copy(origCond, slang_oper_child(oper, 1));
+ }
+ }
+ }
+
+ /* Finally, in innerBody,
+ * replace "break" with "_notBreakFlag = 0; break"
+ * replace "continue" with "break"
+ */
+ replace_break_and_cont(A, innerBody);
+
+ /*slang_print_tree(top, 0);*/
+
+ return _slang_gen_operation(A, top);
+}
+
+
+/**
+ * Generate IR tree for a do-while loop using high-level LOOP, IF instructions.
+ */
+static slang_ir_node *
+_slang_gen_do(slang_assemble_ctx * A, slang_operation *oper)
+{
+ /*
+ * LOOP:
+ * body code (child[0])
+ * tail code:
+ * BREAK if !expr (child[1])
+ */
+ slang_ir_node *loop;
+ GLboolean isConst, constTrue;
+
+ if (!A->EmitContReturn) {
+ /* We don't want to emit CONT instructions. If this do-loop has
+ * a continue, translate it away.
+ */
+ if (_slang_loop_contains_continue(slang_oper_child(oper, 0))) {
+ return _slang_gen_do_without_continue(A, oper);
+ }
+ }
+
+ /* type-check expression */
+ if (!_slang_is_boolean(A, &oper->children[1])) {
+ slang_info_log_error(A->log, "scalar/boolean expression expected for 'do/while'");
+ return NULL;
+ }
+
+ loop = new_loop(NULL);
+
+ /* save loop state */
+ push_loop(A, oper, loop);
+
+ /* loop body: */
+ loop->Children[0] = _slang_gen_operation(A, &oper->children[0]);
+
+ /* Check if loop condition is a constant */
+ isConst = _slang_is_constant_cond(&oper->children[1], &constTrue);
+ if (isConst && constTrue) {
+ /* do { } while(1) ==> no conditional break */
+ loop->Children[1] = NULL; /* no tail code */
+ }
+ else {
+ slang_ir_node *cond
+ = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
+ loop->Children[1] = new_break_if_true(A, cond);
+ }
+
+ /* XXX we should do infinite loop detection, as above */
+
+ /* restore loop state */
+ pop_loop(A);
+
+ return loop;
+}
+
+
+/**
+ * Recursively count the number of operations rooted at 'oper'.
+ * This gives some kind of indication of the size/complexity of an operation.
+ */
+static GLuint
+sizeof_operation(const slang_operation *oper)
+{
+ if (oper) {
+ GLuint count = 1; /* me */
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++) {
+ count += sizeof_operation(&oper->children[i]);
+ }
+ return count;
+ }
+ else {
+ return 0;
+ }
+}
+
+
+/**
+ * Determine if a for-loop can be unrolled.
+ * At this time, only a rather narrow class of for loops can be unrolled.
+ * See code for details.
+ * When a loop can't be unrolled because it's too large we'll emit a
+ * message to the log.
+ */
+static GLboolean
+_slang_can_unroll_for_loop(slang_assemble_ctx * A, const slang_operation *oper)
+{
+ GLuint bodySize;
+ GLint start, end;
+ const char *varName;
+ slang_atom varId;
+
+ if (oper->type != SLANG_OPER_FOR)
+ return GL_FALSE;
+
+ assert(oper->num_children == 4);
+
+ if (_slang_loop_contains_continue_or_break(slang_oper_child_const(oper, 3)))
+ return GL_FALSE;
+
+ /* children[0] must be either "int i=constant" or "i=constant" */
+ if (oper->children[0].type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) {
+ slang_variable *var;
+
+ if (oper->children[0].children[0].type != SLANG_OPER_VARIABLE_DECL)
+ return GL_FALSE;
+
+ varId = oper->children[0].children[0].a_id;
+
+ var = _slang_variable_locate(oper->children[0].children[0].locals,
+ varId, GL_TRUE);
+ if (!var)
+ return GL_FALSE;
+ if (!var->initializer)
+ return GL_FALSE;
+ if (var->initializer->type != SLANG_OPER_LITERAL_INT)
+ return GL_FALSE;
+ start = (GLint) var->initializer->literal[0];
+ }
+ else if (oper->children[0].type == SLANG_OPER_EXPRESSION) {
+ if (oper->children[0].children[0].type != SLANG_OPER_ASSIGN)
+ return GL_FALSE;
+ if (oper->children[0].children[0].children[0].type != SLANG_OPER_IDENTIFIER)
+ return GL_FALSE;
+ if (oper->children[0].children[0].children[1].type != SLANG_OPER_LITERAL_INT)
+ return GL_FALSE;
+
+ varId = oper->children[0].children[0].children[0].a_id;
+
+ start = (GLint) oper->children[0].children[0].children[1].literal[0];
+ }
+ else {
+ return GL_FALSE;
+ }
+
+ /* children[1] must be "i<constant" */
+ if (oper->children[1].type != SLANG_OPER_EXPRESSION)
+ return GL_FALSE;
+ if (oper->children[1].children[0].type != SLANG_OPER_LESS)
+ return GL_FALSE;
+ if (oper->children[1].children[0].children[0].type != SLANG_OPER_IDENTIFIER)
+ return GL_FALSE;
+ if (oper->children[1].children[0].children[1].type != SLANG_OPER_LITERAL_INT)
+ return GL_FALSE;
+
+ end = (GLint) oper->children[1].children[0].children[1].literal[0];
+
+ /* children[2] must be "i++" or "++i" */
+ if (oper->children[2].type != SLANG_OPER_POSTINCREMENT &&
+ oper->children[2].type != SLANG_OPER_PREINCREMENT)
+ return GL_FALSE;
+ if (oper->children[2].children[0].type != SLANG_OPER_IDENTIFIER)
+ return GL_FALSE;
+
+ /* make sure the same variable name is used in all places */
+ if ((oper->children[1].children[0].children[0].a_id != varId) ||
+ (oper->children[2].children[0].a_id != varId))
+ return GL_FALSE;
+
+ varName = (const char *) varId;
+
+ /* children[3], the loop body, can't be too large */
+ bodySize = sizeof_operation(&oper->children[3]);
+ if (bodySize > MAX_FOR_LOOP_UNROLL_BODY_SIZE) {
+ slang_info_log_print(A->log,
+ "Note: 'for (%s ... )' body is too large/complex"
+ " to unroll",
+ varName);
+ return GL_FALSE;
+ }
+
+ if (start >= end)
+ return GL_FALSE; /* degenerate case */
+
+ if ((GLuint)(end - start) > MAX_FOR_LOOP_UNROLL_ITERATIONS) {
+ slang_info_log_print(A->log,
+ "Note: 'for (%s=%d; %s<%d; ++%s)' is too"
+ " many iterations to unroll",
+ varName, start, varName, end, varName);
+ return GL_FALSE;
+ }
+
+ if ((end - start) * bodySize > MAX_FOR_LOOP_UNROLL_COMPLEXITY) {
+ slang_info_log_print(A->log,
+ "Note: 'for (%s=%d; %s<%d; ++%s)' will generate"
+ " too much code to unroll",
+ varName, start, varName, end, varName);
+ return GL_FALSE;
+ }
+
+ return GL_TRUE; /* we can unroll the loop */
+}
+
+
+/**
+ * Unroll a for-loop.
+ * First we determine the number of iterations to unroll.
+ * Then for each iteration:
+ * make a copy of the loop body
+ * replace instances of the loop variable with the current iteration value
+ * generate IR code for the body
+ * \return pointer to generated IR code or NULL if error, out of memory, etc.
+ */
+static slang_ir_node *
+_slang_unroll_for_loop(slang_assemble_ctx * A, const slang_operation *oper)
+{
+ GLint start, end, iter;
+ slang_ir_node *n, *root = NULL;
+ slang_atom varId;
+
+ if (oper->children[0].type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) {
+ /* for (int i=0; ... */
+ slang_variable *var;
+
+ varId = oper->children[0].children[0].a_id;
+ var = _slang_variable_locate(oper->children[0].children[0].locals,
+ varId, GL_TRUE);
+ assert(var);
+ start = (GLint) var->initializer->literal[0];
+ }
+ else {
+ /* for (i=0; ... */
+ varId = oper->children[0].children[0].children[0].a_id;
+ start = (GLint) oper->children[0].children[0].children[1].literal[0];
+ }
+
+ end = (GLint) oper->children[1].children[0].children[1].literal[0];
+
+ for (iter = start; iter < end; iter++) {
+ slang_operation *body;
+
+ /* make a copy of the loop body */
+ body = slang_operation_new(1);
+ if (!body)
+ return NULL;
+
+ if (!slang_operation_copy(body, &oper->children[3]))
+ return NULL;
+
+ /* in body, replace instances of 'varId' with literal 'iter' */
+ {
+ slang_variable *oldVar;
+ slang_operation *newOper;
+
+ oldVar = _slang_variable_locate(oper->locals, varId, GL_TRUE);
+ if (!oldVar) {
+ /* undeclared loop variable */
+ slang_operation_delete(body);
+ return NULL;
+ }
+
+ newOper = slang_operation_new(1);
+ newOper->type = SLANG_OPER_LITERAL_INT;
+ newOper->literal_size = 1;
+ newOper->literal[0] = (GLfloat) iter;
+
+ /* replace instances of the loop variable with newOper */
+ slang_substitute(A, body, 1, &oldVar, &newOper, GL_FALSE);
+ }
+
+ /* do IR codegen for body */
+ n = _slang_gen_operation(A, body);
+ if (!n)
+ return NULL;
+
+ root = new_seq(root, n);
+
+ slang_operation_delete(body);
+ }
+
+ return root;
+}
+
+
+/**
+ * Replace 'continue' statement with 'break' inside a for-loop.
+ * This is a recursive helper function used by _slang_gen_for_without_continue().
+ */
+static void
+replace_continue_with_break(slang_assemble_ctx *A, slang_operation *oper)
+{
+ switch (oper->type) {
+ case SLANG_OPER_CONTINUE:
+ oper->type = SLANG_OPER_BREAK;
+ break;
+ case SLANG_OPER_FOR:
+ case SLANG_OPER_DO:
+ case SLANG_OPER_WHILE:
+ /* stop upon finding a nested loop */
+ break;
+ default:
+ /* recurse */
+ {
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++) {
+ replace_continue_with_break(A, slang_oper_child(oper, i));
+ }
+ }
+ }
+}
+
+
+/**
+ * Transform a for-loop so that continue statements are converted to breaks.
+ * Then do normal IR code generation.
+ *
+ * Before:
+ *
+ * for (INIT; LOOPCOND; INCR) {
+ * A;
+ * if (IFCOND) {
+ * continue;
+ * }
+ * B;
+ * }
+ *
+ * After:
+ *
+ * {
+ * bool _condFlag = 1;
+ * for (INIT; _condFlag; ) {
+ * for ( ; _condFlag = LOOPCOND; INCR) {
+ * A;
+ * if (IFCOND) {
+ * break;
+ * }
+ * B;
+ * }
+ * if (_condFlag)
+ * INCR;
+ * }
+ * }
+ */
+static slang_ir_node *
+_slang_gen_for_without_continue(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_operation *top;
+ slang_operation *outerFor, *innerFor, *init, *cond, *incr;
+ slang_operation *lhs, *rhs;
+
+ assert(oper->type == SLANG_OPER_FOR);
+
+ top = slang_operation_new(1);
+ top->type = SLANG_OPER_BLOCK_NEW_SCOPE;
+ top->locals->outer_scope = oper->locals->outer_scope;
+ slang_operation_add_children(top, 2);
+
+ /* declare: bool _condFlag = true */
+ {
+ slang_operation *condDecl = slang_oper_child(top, 0);
+ slang_generate_declaration(A, top->locals, condDecl,
+ SLANG_SPEC_BOOL, "_condFlag", GL_TRUE);
+ }
+
+ /* build outer loop: for (INIT; _condFlag; ) { */
+ outerFor = slang_oper_child(top, 1);
+ outerFor->type = SLANG_OPER_FOR;
+ slang_operation_add_children(outerFor, 4);
+
+ init = slang_oper_child(outerFor, 0);
+ slang_operation_copy(init, slang_oper_child(oper, 0));
+
+ cond = slang_oper_child(outerFor, 1);
+ cond->type = SLANG_OPER_IDENTIFIER;
+ cond->a_id = slang_atom_pool_atom(A->atoms, "_condFlag");
+
+ incr = slang_oper_child(outerFor, 2);
+ incr->type = SLANG_OPER_VOID;
+
+ /* body of the outer loop */
+ {
+ slang_operation *block = slang_oper_child(outerFor, 3);
+
+ slang_operation_add_children(block, 2);
+ block->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE;
+
+ /* build inner loop: for ( ; _condFlag = LOOPCOND; INCR) { */
+ {
+ innerFor = slang_oper_child(block, 0);
+
+ /* make copy of orig loop */
+ slang_operation_copy(innerFor, oper);
+ assert(innerFor->type == SLANG_OPER_FOR);
+ innerFor->locals->outer_scope = block->locals;
+
+ init = slang_oper_child(innerFor, 0);
+ init->type = SLANG_OPER_VOID; /* leak? */
+
+ cond = slang_oper_child(innerFor, 1);
+ slang_operation_destruct(cond);
+ cond->type = SLANG_OPER_ASSIGN;
+ cond->locals = _slang_variable_scope_new(innerFor->locals);
+ slang_operation_add_children(cond, 2);
+
+ lhs = slang_oper_child(cond, 0);
+ lhs->type = SLANG_OPER_IDENTIFIER;
+ lhs->a_id = slang_atom_pool_atom(A->atoms, "_condFlag");
+
+ rhs = slang_oper_child(cond, 1);
+ slang_operation_copy(rhs, slang_oper_child(oper, 1));
+ }
+
+ /* if (_condFlag) INCR; */
+ {
+ slang_operation *ifop = slang_oper_child(block, 1);
+ ifop->type = SLANG_OPER_IF;
+ slang_operation_add_children(ifop, 2);
+
+ /* re-use cond node build above */
+ slang_operation_copy(slang_oper_child(ifop, 0), cond);
+
+ /* incr node from original for-loop operation */
+ slang_operation_copy(slang_oper_child(ifop, 1),
+ slang_oper_child(oper, 2));
+ }
+
+ /* finally, replace "continue" with "break" in the inner for-loop */
+ replace_continue_with_break(A, slang_oper_child(innerFor, 3));
+ }
+
+ return _slang_gen_operation(A, top);
+}
+
+
+
+/**
+ * Generate IR for a for-loop. Unrolling will be done when possible.
+ */
+static slang_ir_node *
+_slang_gen_for(slang_assemble_ctx * A, slang_operation *oper)
+{
+ GLboolean unroll;
+
+ if (!A->EmitContReturn) {
+ /* We don't want to emit CONT instructions. If this for-loop has
+ * a continue, translate it away.
+ */
+ if (_slang_loop_contains_continue(slang_oper_child(oper, 3))) {
+ return _slang_gen_for_without_continue(A, oper);
+ }
+ }
+
+ unroll = _slang_can_unroll_for_loop(A, oper);
+ if (unroll) {
+ slang_ir_node *code = _slang_unroll_for_loop(A, oper);
+ if (code)
+ return code;
+ }
+
+ assert(oper->type == SLANG_OPER_FOR);
+
+ /* conventional for-loop code generation */
+ {
+ /*
+ * init code (child[0])
+ * LOOP:
+ * BREAK if !expr (child[1])
+ * body code (child[3])
+ * tail code:
+ * incr code (child[2]) // XXX continue here
+ */
+ slang_ir_node *loop, *cond, *breakIf, *body, *init, *incr;
+ init = _slang_gen_operation(A, &oper->children[0]);
+ loop = new_loop(NULL);
+
+ /* save loop state */
+ push_loop(A, oper, loop);
+
+ cond = new_cond(new_not(_slang_gen_operation(A, &oper->children[1])));
+ breakIf = new_break_if_true(A, cond);
+ body = _slang_gen_operation(A, &oper->children[3]);
+ incr = _slang_gen_operation(A, &oper->children[2]);
+
+ loop->Children[0] = new_seq(breakIf, body);
+ loop->Children[1] = incr; /* tail code */
+
+ /* restore loop state */
+ pop_loop(A);
+
+ return new_seq(init, loop);
+ }
+}
+
+
+static slang_ir_node *
+_slang_gen_continue(slang_assemble_ctx * A, const slang_operation *oper)
+{
+ slang_ir_node *n, *cont, *incr = NULL, *loopNode;
+
+ assert(oper->type == SLANG_OPER_CONTINUE);
+ loopNode = current_loop_ir(A);
+ assert(loopNode);
+ assert(loopNode->Opcode == IR_LOOP);
+
+ cont = new_node0(IR_CONT);
+ if (cont) {
+ cont->Parent = loopNode;
+ /* insert this node at head of linked list of cont/break instructions */
+ cont->List = loopNode->List;
+ loopNode->List = cont;
+ }
+
+ n = new_seq(incr, cont);
+ return n;
+}
+
+
+/**
+ * Determine if the given operation is of a specific type.
+ */
+static GLboolean
+is_operation_type(const slang_operation *oper, slang_operation_type type)
+{
+ if (oper->type == type)
+ return GL_TRUE;
+ else if ((oper->type == SLANG_OPER_BLOCK_NEW_SCOPE ||
+ oper->type == SLANG_OPER_BLOCK_NO_NEW_SCOPE) &&
+ oper->num_children == 1)
+ return is_operation_type(&oper->children[0], type);
+ else
+ return GL_FALSE;
+}
+
+
+/**
+ * Generate IR tree for an if/then/else conditional using high-level
+ * IR_IF instruction.
+ */
+static slang_ir_node *
+_slang_gen_if(slang_assemble_ctx * A, const slang_operation *oper)
+{
+ /*
+ * eval expr (child[0])
+ * IF expr THEN
+ * if-body code
+ * ELSE
+ * else-body code
+ * ENDIF
+ */
+ const GLboolean haveElseClause = !_slang_is_noop(&oper->children[2]);
+ slang_ir_node *ifNode, *cond, *ifBody, *elseBody;
+ GLboolean isConst, constTrue;
+
+ /* type-check expression */
+ if (!_slang_is_boolean(A, &oper->children[0])) {
+ slang_info_log_error(A->log, "boolean expression expected for 'if'");
+ return NULL;
+ }
+
+ if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
+ slang_info_log_error(A->log, "scalar/boolean expression expected for 'if'");
+ return NULL;
+ }
+
+ isConst = _slang_is_constant_cond(&oper->children[0], &constTrue);
+ if (isConst) {
+ if (constTrue) {
+ /* if (true) ... */
+ return _slang_gen_operation(A, &oper->children[1]);
+ }
+ else {
+ /* if (false) ... */
+ return _slang_gen_operation(A, &oper->children[2]);
+ }
+ }
+
+ cond = _slang_gen_operation(A, &oper->children[0]);
+ cond = new_cond(cond);
+
+ if (is_operation_type(&oper->children[1], SLANG_OPER_BREAK)
+ && !haveElseClause) {
+ /* Special case: generate a conditional break */
+ ifBody = new_break_if_true(A, cond);
+ return ifBody;
+ }
+ else if (is_operation_type(&oper->children[1], SLANG_OPER_CONTINUE)
+ && !haveElseClause
+ && current_loop_oper(A)
+ && current_loop_oper(A)->type != SLANG_OPER_FOR) {
+ /* Special case: generate a conditional continue */
+ ifBody = new_cont_if_true(A, cond);
+ return ifBody;
+ }
+ else {
+ /* general case */
+ ifBody = _slang_gen_operation(A, &oper->children[1]);
+ if (haveElseClause)
+ elseBody = _slang_gen_operation(A, &oper->children[2]);
+ else
+ elseBody = NULL;
+ ifNode = new_if(cond, ifBody, elseBody);
+ return ifNode;
+ }
+}
+
+
+
+static slang_ir_node *
+_slang_gen_not(slang_assemble_ctx * A, const slang_operation *oper)
+{
+ slang_ir_node *n;
+
+ assert(oper->type == SLANG_OPER_NOT);
+
+ /* type-check expression */
+ if (!_slang_is_scalar_or_boolean(A, &oper->children[0])) {
+ slang_info_log_error(A->log,
+ "scalar/boolean expression expected for '!'");
+ return NULL;
+ }
+
+ n = _slang_gen_operation(A, &oper->children[0]);
+ if (n)
+ return new_not(n);
+ else
+ return NULL;
+}
+
+
+static slang_ir_node *
+_slang_gen_xor(slang_assemble_ctx * A, const slang_operation *oper)
+{
+ slang_ir_node *n1, *n2;
+
+ assert(oper->type == SLANG_OPER_LOGICALXOR);
+
+ if (!_slang_is_scalar_or_boolean(A, &oper->children[0]) ||
+ !_slang_is_scalar_or_boolean(A, &oper->children[0])) {
+ slang_info_log_error(A->log,
+ "scalar/boolean expressions expected for '^^'");
+ return NULL;
+ }
+
+ n1 = _slang_gen_operation(A, &oper->children[0]);
+ if (!n1)
+ return NULL;
+ n2 = _slang_gen_operation(A, &oper->children[1]);
+ if (!n2)
+ return NULL;
+ return new_node2(IR_NOTEQUAL, n1, n2);
+}
+
+
+/**
+ * Generate IR node for storage of a temporary of given size.
+ */
+static slang_ir_node *
+_slang_gen_temporary(GLint size)
+{
+ slang_ir_storage *store;
+ slang_ir_node *n = NULL;
+
+ store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -2, size);
+ if (store) {
+ n = new_node0(IR_VAR_DECL);
+ if (n) {
+ n->Store = store;
+ }
+ else {
+ _slang_free(store);
+ }
+ }
+ return n;
+}
+
+
+/**
+ * Generate program constants for an array.
+ * Ex: const vec2[3] v = vec2[3](vec2(1,1), vec2(2,2), vec2(3,3));
+ * This will allocate and initialize three vector constants, storing
+ * the array in constant memory, not temporaries like a non-const array.
+ * This can also be used for uniform array initializers.
+ * \return GL_TRUE for success, GL_FALSE if failure (semantic error, etc).
+ */
+static GLboolean
+make_constant_array(slang_assemble_ctx *A,
+ slang_variable *var,
+ slang_operation *initializer)
+{
+ struct gl_program *prog = A->program;
+ const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
+ const char *varName = (char *) var->a_name;
+ const GLuint numElements = initializer->num_children;
+ GLint size;
+ GLuint i, j;
+ GLfloat *values;
+
+ if (!var->store) {
+ var->store = _slang_new_ir_storage(PROGRAM_UNDEFINED, -6, -6);
+ }
+ size = var->store->Size;
+
+ assert(var->type.qualifier == SLANG_QUAL_CONST ||
+ var->type.qualifier == SLANG_QUAL_UNIFORM);
+ assert(initializer->type == SLANG_OPER_CALL);
+ assert(initializer->array_constructor);
+
+ values = (GLfloat *) malloc(numElements * 4 * sizeof(GLfloat));
+
+ /* convert constructor params into ordinary floats */
+ for (i = 0; i < numElements; i++) {
+ const slang_operation *op = &initializer->children[i];
+ if (op->type != SLANG_OPER_LITERAL_FLOAT) {
+ /* unsupported type for this optimization */
+ free(values);
+ return GL_FALSE;
+ }
+ for (j = 0; j < op->literal_size; j++) {
+ values[i * 4 + j] = op->literal[j];
+ }
+ for ( ; j < 4; j++) {
+ values[i * 4 + j] = 0.0f;
+ }
+ }
+
+ /* slightly different paths for constants vs. uniforms */
+ if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
+ var->store->File = PROGRAM_UNIFORM;
+ var->store->Index = _mesa_add_uniform(prog->Parameters, varName,
+ size, datatype, values);
+ }
+ else {
+ var->store->File = PROGRAM_CONSTANT;
+ var->store->Index = _mesa_add_named_constant(prog->Parameters, varName,
+ values, size);
+ }
+ assert(var->store->Size == size);
+
+ free(values);
+
+ return GL_TRUE;
+}
+
+
+
+/**
+ * Generate IR node for allocating/declaring a variable (either a local or
+ * a global).
+ * Generally, this involves allocating an slang_ir_storage instance for the
+ * variable, choosing a register file (temporary, constant, etc).
+ * For ordinary variables we do not yet allocate storage though. We do that
+ * when we find the first actual use of the variable to avoid allocating temp
+ * regs that will never get used.
+ * At this time, uniforms are always allocated space in this function.
+ *
+ * \param initializer Optional initializer expression for the variable.
+ */
+static slang_ir_node *
+_slang_gen_var_decl(slang_assemble_ctx *A, slang_variable *var,
+ slang_operation *initializer)
+{
+ const char *varName = (const char *) var->a_name;
+ const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
+ slang_ir_node *varDecl, *n;
+ slang_ir_storage *store;
+ GLint arrayLen, size, totalSize; /* if array then totalSize > size */
+ gl_register_file file;
+
+ /*assert(!var->declared);*/
+ var->declared = GL_TRUE;
+
+ /* determine GPU register file for simple cases */
+ if (is_sampler_type(&var->type)) {
+ file = PROGRAM_SAMPLER;
+ }
+ else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
+ file = PROGRAM_UNIFORM;
+ }
+ else {
+ file = PROGRAM_TEMPORARY;
+ }
+
+ size = _slang_sizeof_type_specifier(&var->type.specifier);
+ if (size <= 0) {
+ slang_info_log_error(A->log, "invalid declaration for '%s'", varName);
+ return NULL;
+ }
+
+ arrayLen = _slang_array_length(var);
+ totalSize = _slang_array_size(size, arrayLen);
+
+ /* Allocate IR node for the declaration */
+ varDecl = new_node0(IR_VAR_DECL);
+ if (!varDecl)
+ return NULL;
+
+ /* Allocate slang_ir_storage for this variable if needed.
+ * Note that we may not actually allocate a constant or temporary register
+ * until later.
+ */
+ if (!var->store) {
+ GLint index = -7; /* TBD / unknown */
+ var->store = _slang_new_ir_storage(file, index, totalSize);
+ if (!var->store)
+ return NULL; /* out of memory */
+ }
+
+ /* set the IR node's Var and Store pointers */
+ varDecl->Var = var;
+ varDecl->Store = var->store;
+
+
+ store = var->store;
+
+ /* if there's an initializer, generate IR for the expression */
+ if (initializer) {
+ slang_ir_node *varRef, *init;
+
+ if (var->type.qualifier == SLANG_QUAL_CONST) {
+ /* if the variable is const, the initializer must be a const
+ * expression as well.
+ */
+#if 0
+ if (!_slang_is_constant_expr(initializer)) {
+ slang_info_log_error(A->log,
+ "initializer for %s not constant", varName);
+ return NULL;
+ }
+#endif
+ }
+
+ if (var->type.qualifier == SLANG_QUAL_UNIFORM &&
+ !A->allow_uniform_initializers) {
+ slang_info_log_error(A->log,
+ "initializer for uniform %s not allowed",
+ varName);
+ return NULL;
+ }
+
+ /* IR for the variable we're initializing */
+ varRef = new_var(A, var);
+ if (!varRef) {
+ slang_info_log_error(A->log, "out of memory");
+ return NULL;
+ }
+
+ /* constant-folding, etc here */
+ _slang_simplify(initializer, &A->space, A->atoms);
+
+ /* look for simple constant-valued variables and uniforms */
+ if (var->type.qualifier == SLANG_QUAL_CONST ||
+ var->type.qualifier == SLANG_QUAL_UNIFORM) {
+
+ if (initializer->type == SLANG_OPER_CALL &&
+ initializer->array_constructor) {
+ /* array initializer */
+ if (make_constant_array(A, var, initializer))
+ return varRef;
+ }
+ else if (initializer->type == SLANG_OPER_LITERAL_FLOAT ||
+ initializer->type == SLANG_OPER_LITERAL_INT) {
+ /* simple float/vector initializer */
+ if (store->File == PROGRAM_UNIFORM) {
+ store->Index = _mesa_add_uniform(A->program->Parameters,
+ varName,
+ totalSize, datatype,
+ initializer->literal);
+ store->Swizzle = _slang_var_swizzle(size, 0);
+ return varRef;
+ }
+#if 0
+ else {
+ store->File = PROGRAM_CONSTANT;
+ store->Index = _mesa_add_named_constant(A->program->Parameters,
+ varName,
+ initializer->literal,
+ totalSize);
+ store->Swizzle = _slang_var_swizzle(size, 0);
+ return varRef;
+ }
+#endif
+ }
+ }
+
+ /* IR for initializer */
+ init = _slang_gen_operation(A, initializer);
+ if (!init)
+ return NULL;
+
+ /* XXX remove this when type checking is added above */
+ if (init->Store && init->Store->Size != totalSize) {
+ slang_info_log_error(A->log, "invalid assignment (wrong types)");
+ return NULL;
+ }
+
+ /* assign RHS to LHS */
+ n = new_node2(IR_COPY, varRef, init);
+ n = new_seq(varDecl, n);
+ }
+ else {
+ /* no initializer */
+ n = varDecl;
+ }
+
+ if (store->File == PROGRAM_UNIFORM && store->Index < 0) {
+ /* always need to allocate storage for uniforms at this point */
+ store->Index = _mesa_add_uniform(A->program->Parameters, varName,
+ totalSize, datatype, NULL);
+ store->Swizzle = _slang_var_swizzle(size, 0);
+ }
+
+#if 0
+ printf("%s var %p %s store=%p index=%d size=%d\n",
+ __FUNCTION__, (void *) var, (char *) varName,
+ (void *) store, store->Index, store->Size);
+#endif
+
+ return n;
+}
+
+
+/**
+ * Generate code for a selection expression: b ? x : y
+ * XXX In some cases we could implement a selection expression
+ * with an LRP instruction (use the boolean as the interpolant).
+ * Otherwise, we use an IF/ELSE/ENDIF construct.
+ */
+static slang_ir_node *
+_slang_gen_select(slang_assemble_ctx *A, slang_operation *oper)
+{
+ slang_ir_node *cond, *ifNode, *trueExpr, *falseExpr, *trueNode, *falseNode;
+ slang_ir_node *tmpDecl, *tmpVar, *tree;
+ slang_typeinfo type0, type1, type2;
+ int size, isBool, isEqual;
+
+ assert(oper->type == SLANG_OPER_SELECT);
+ assert(oper->num_children == 3);
+
+ /* type of children[0] must be boolean */
+ slang_typeinfo_construct(&type0);
+ typeof_operation(A, &oper->children[0], &type0);
+ isBool = (type0.spec.type == SLANG_SPEC_BOOL);
+ slang_typeinfo_destruct(&type0);
+ if (!isBool) {
+ slang_info_log_error(A->log, "selector type is not boolean");
+ return NULL;
+ }
+
+ slang_typeinfo_construct(&type1);
+ slang_typeinfo_construct(&type2);
+ typeof_operation(A, &oper->children[1], &type1);
+ typeof_operation(A, &oper->children[2], &type2);
+ isEqual = slang_type_specifier_equal(&type1.spec, &type2.spec);
+ slang_typeinfo_destruct(&type1);
+ slang_typeinfo_destruct(&type2);
+ if (!isEqual) {
+ slang_info_log_error(A->log, "incompatible types for ?: operator");
+ return NULL;
+ }
+
+ /* size of x or y's type */
+ size = _slang_sizeof_type_specifier(&type1.spec);
+ assert(size > 0);
+
+ /* temporary var */
+ tmpDecl = _slang_gen_temporary(size);
+
+ /* the condition (child 0) */
+ cond = _slang_gen_operation(A, &oper->children[0]);
+ cond = new_cond(cond);
+
+ /* if-true body (child 1) */
+ tmpVar = new_node0(IR_VAR);
+ tmpVar->Store = tmpDecl->Store;
+ trueExpr = _slang_gen_operation(A, &oper->children[1]);
+ trueNode = new_node2(IR_COPY, tmpVar, trueExpr);
+
+ /* if-false body (child 2) */
+ tmpVar = new_node0(IR_VAR);
+ tmpVar->Store = tmpDecl->Store;
+ falseExpr = _slang_gen_operation(A, &oper->children[2]);
+ falseNode = new_node2(IR_COPY, tmpVar, falseExpr);
+
+ ifNode = new_if(cond, trueNode, falseNode);
+
+ /* tmp var value */
+ tmpVar = new_node0(IR_VAR);
+ tmpVar->Store = tmpDecl->Store;
+
+ tree = new_seq(ifNode, tmpVar);
+ tree = new_seq(tmpDecl, tree);
+
+ /*_slang_print_ir_tree(tree, 10);*/
+ return tree;
+}
+
+
+/**
+ * Generate code for &&.
+ */
+static slang_ir_node *
+_slang_gen_logical_and(slang_assemble_ctx *A, slang_operation *oper)
+{
+ /* rewrite "a && b" as "a ? b : false" */
+ slang_operation *select;
+ slang_ir_node *n;
+
+ select = slang_operation_new(1);
+ select->type = SLANG_OPER_SELECT;
+ slang_operation_add_children(select, 3);
+
+ slang_operation_copy(slang_oper_child(select, 0), &oper->children[0]);
+ slang_operation_copy(slang_oper_child(select, 1), &oper->children[1]);
+ slang_operation_literal_bool(slang_oper_child(select, 2), GL_FALSE);
+
+ n = _slang_gen_select(A, select);
+ return n;
+}
+
+
+/**
+ * Generate code for ||.
+ */
+static slang_ir_node *
+_slang_gen_logical_or(slang_assemble_ctx *A, slang_operation *oper)
+{
+ /* rewrite "a || b" as "a ? true : b" */
+ slang_operation *select;
+ slang_ir_node *n;
+
+ select = slang_operation_new(1);
+ select->type = SLANG_OPER_SELECT;
+ slang_operation_add_children(select, 3);
+
+ slang_operation_copy(slang_oper_child(select, 0), &oper->children[0]);
+ slang_operation_literal_bool(slang_oper_child(select, 1), GL_TRUE);
+ slang_operation_copy(slang_oper_child(select, 2), &oper->children[1]);
+
+ n = _slang_gen_select(A, select);
+ return n;
+}
+
+
+/**
+ * Generate IR tree for a return statement.
+ */
+static slang_ir_node *
+_slang_gen_return(slang_assemble_ctx * A, slang_operation *oper)
+{
+ assert(oper->type == SLANG_OPER_RETURN);
+ return new_return(A->curFuncEndLabel);
+}
+
+
+#if 0
+/**
+ * Determine if the given operation/expression is const-valued.
+ */
+static GLboolean
+_slang_is_constant_expr(const slang_operation *oper)
+{
+ slang_variable *var;
+ GLuint i;
+
+ switch (oper->type) {
+ case SLANG_OPER_IDENTIFIER:
+ var = _slang_variable_locate(oper->locals, oper->a_id, GL_TRUE);
+ if (var && var->type.qualifier == SLANG_QUAL_CONST)
+ return GL_TRUE;
+ return GL_FALSE;
+ default:
+ for (i = 0; i < oper->num_children; i++) {
+ if (!_slang_is_constant_expr(&oper->children[i]))
+ return GL_FALSE;
+ }
+ return GL_TRUE;
+ }
+}
+#endif
+
+
+/**
+ * Check if an assignment of type t1 to t0 is legal.
+ * XXX more cases needed.
+ */
+static GLboolean
+_slang_assignment_compatible(slang_assemble_ctx *A,
+ slang_operation *op0,
+ slang_operation *op1)
+{
+ slang_typeinfo t0, t1;
+ GLuint sz0, sz1;
+
+ if (op0->type == SLANG_OPER_POSTINCREMENT ||
+ op0->type == SLANG_OPER_POSTDECREMENT) {
+ return GL_FALSE;
+ }
+
+ slang_typeinfo_construct(&t0);
+ typeof_operation(A, op0, &t0);
+
+ slang_typeinfo_construct(&t1);
+ typeof_operation(A, op1, &t1);
+
+ sz0 = _slang_sizeof_type_specifier(&t0.spec);
+ sz1 = _slang_sizeof_type_specifier(&t1.spec);
+
+#if 1
+ if (sz0 != sz1) {
+ /*printf("assignment size mismatch %u vs %u\n", sz0, sz1);*/
+ return GL_FALSE;
+ }
+#endif
+
+ if (t0.spec.type == SLANG_SPEC_STRUCT &&
+ t1.spec.type == SLANG_SPEC_STRUCT &&
+ t0.spec._struct->a_name != t1.spec._struct->a_name)
+ return GL_FALSE;
+
+ if (t0.spec.type == SLANG_SPEC_FLOAT &&
+ t1.spec.type == SLANG_SPEC_BOOL)
+ return GL_FALSE;
+
+#if 0 /* not used just yet - causes problems elsewhere */
+ if (t0.spec.type == SLANG_SPEC_INT &&
+ t1.spec.type == SLANG_SPEC_FLOAT)
+ return GL_FALSE;
+#endif
+
+ if (t0.spec.type == SLANG_SPEC_BOOL &&
+ t1.spec.type == SLANG_SPEC_FLOAT)
+ return GL_FALSE;
+
+ if (t0.spec.type == SLANG_SPEC_BOOL &&
+ t1.spec.type == SLANG_SPEC_INT)
+ return GL_FALSE;
+
+ return GL_TRUE;
+}
+
+
+/**
+ * Generate IR tree for a local variable declaration.
+ * Basically do some error checking and call _slang_gen_var_decl().
+ */
+static slang_ir_node *
+_slang_gen_declaration(slang_assemble_ctx *A, slang_operation *oper)
+{
+ const char *varName = (char *) oper->a_id;
+ slang_variable *var;
+ slang_ir_node *varDecl;
+ slang_operation *initializer;
+
+ assert(oper->type == SLANG_OPER_VARIABLE_DECL);
+ assert(oper->num_children <= 1);
+
+
+ /* lookup the variable by name */
+ var = _slang_variable_locate(oper->locals, oper->a_id, GL_TRUE);
+ if (!var)
+ return NULL; /* "shouldn't happen" */
+
+ if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
+ var->type.qualifier == SLANG_QUAL_VARYING ||
+ var->type.qualifier == SLANG_QUAL_UNIFORM) {
+ /* can't declare attribute/uniform vars inside functions */
+ slang_info_log_error(A->log,
+ "local variable '%s' cannot be an attribute/uniform/varying",
+ varName);
+ return NULL;
+ }
+
+#if 0
+ if (v->declared) {
+ slang_info_log_error(A->log, "variable '%s' redeclared", varName);
+ return NULL;
+ }
+#endif
+
+ /* check if the var has an initializer */
+ if (oper->num_children > 0) {
+ assert(oper->num_children == 1);
+ initializer = &oper->children[0];
+ }
+ else if (var->initializer) {
+ initializer = var->initializer;
+ }
+ else {
+ initializer = NULL;
+ }
+
+ if (initializer) {
+ /* check/compare var type and initializer type */
+ if (!_slang_assignment_compatible(A, oper, initializer)) {
+ slang_info_log_error(A->log, "incompatible types in assignment");
+ return NULL;
+ }
+ }
+ else {
+ if (var->type.qualifier == SLANG_QUAL_CONST) {
+ slang_info_log_error(A->log,
+ "const-qualified variable '%s' requires initializer",
+ varName);
+ return NULL;
+ }
+ }
+
+ /* Generate IR node */
+ varDecl = _slang_gen_var_decl(A, var, initializer);
+ if (!varDecl)
+ return NULL;
+
+ return varDecl;
+}
+
+
+/**
+ * Generate IR tree for a reference to a variable (such as in an expression).
+ * This is different from a variable declaration.
+ */
+static slang_ir_node *
+_slang_gen_variable(slang_assemble_ctx * A, slang_operation *oper)
+{
+ /* If there's a variable associated with this oper (from inlining)
+ * use it. Otherwise, use the oper's var id.
+ */
+ slang_atom name = oper->var ? oper->var->a_name : oper->a_id;
+ slang_variable *var = _slang_variable_locate(oper->locals, name, GL_TRUE);
+ slang_ir_node *n;
+ if (!var || !var->declared) {
+ slang_info_log_error(A->log, "undefined variable '%s'", (char *) name);
+ return NULL;
+ }
+ n = new_var(A, var);
+ return n;
+}
+
+
+
+/**
+ * Return the number of components actually named by the swizzle.
+ * Recall that swizzles may have undefined/don't-care values.
+ */
+static GLuint
+swizzle_size(GLuint swizzle)
+{
+ GLuint size = 0, i;
+ for (i = 0; i < 4; i++) {
+ GLuint swz = GET_SWZ(swizzle, i);
+ size += (swz <= 3);
+ }
+ return size;
+}
+
+
+static slang_ir_node *
+_slang_gen_swizzle(slang_ir_node *child, GLuint swizzle)
+{
+ slang_ir_node *n = new_node1(IR_SWIZZLE, child);
+ assert(child);
+ if (n) {
+ assert(!n->Store);
+ n->Store = _slang_new_ir_storage_relative(0,
+ swizzle_size(swizzle),
+ child->Store);
+ assert(n->Store);
+ n->Store->Swizzle = swizzle;
+ }
+ return n;
+}
+
+
+static GLboolean
+is_store_writable(const slang_assemble_ctx *A, const slang_ir_storage *store)
+{
+ while (store->Parent)
+ store = store->Parent;
+
+ if (!(store->File == PROGRAM_OUTPUT ||
+ store->File == PROGRAM_TEMPORARY ||
+ (store->File == PROGRAM_VARYING &&
+ A->program->Target == GL_VERTEX_PROGRAM_ARB))) {
+ return GL_FALSE;
+ }
+ else {
+ return GL_TRUE;
+ }
+}
+
+
+/**
+ * Walk up an IR storage path to compute the final swizzle.
+ * This is used when we find an expression such as "foo.xz.yx".
+ */
+static GLuint
+root_swizzle(const slang_ir_storage *st)
+{
+ GLuint swizzle = st->Swizzle;
+ while (st->Parent) {
+ st = st->Parent;
+ swizzle = _slang_swizzle_swizzle(st->Swizzle, swizzle);
+ }
+ return swizzle;
+}
+
+
+/**
+ * Generate IR tree for an assignment (=).
+ */
+static slang_ir_node *
+_slang_gen_assignment(slang_assemble_ctx * A, slang_operation *oper)
+{
+ slang_operation *pred = NULL;
+ slang_ir_node *n = NULL;
+
+ if (oper->children[0].type == SLANG_OPER_IDENTIFIER) {
+ /* Check that var is writeable */
+ const char *varName = (char *) oper->children[0].a_id;
+ slang_variable *var
+ = _slang_variable_locate(oper->children[0].locals,
+ oper->children[0].a_id, GL_TRUE);
+ if (!var) {
+ slang_info_log_error(A->log, "undefined variable '%s'", varName);
+ return NULL;
+ }
+
+ if (var->type.qualifier == SLANG_QUAL_CONST ||
+ var->type.qualifier == SLANG_QUAL_ATTRIBUTE ||
+ var->type.qualifier == SLANG_QUAL_UNIFORM ||
+ (var->type.qualifier == SLANG_QUAL_VARYING &&
+ A->program->Target == GL_FRAGMENT_PROGRAM_ARB)) {
+ slang_info_log_error(A->log,
+ "illegal assignment to read-only variable '%s'",
+ varName);
+ return NULL;
+ }
+
+ /* check if we need to predicate this assignment based on __notRetFlag */
+ if ((var->is_global ||
+ var->type.qualifier == SLANG_QUAL_OUT ||
+ var->type.qualifier == SLANG_QUAL_INOUT) && A->UseReturnFlag) {
+ /* create predicate, used below */
+ pred = slang_operation_new(1);
+ pred->type = SLANG_OPER_IDENTIFIER;
+ pred->a_id = slang_atom_pool_atom(A->atoms, "__notRetFlag");
+ pred->locals->outer_scope = oper->locals->outer_scope;
+ }
+ }
+
+ if (oper->children[0].type == SLANG_OPER_IDENTIFIER &&
+ oper->children[1].type == SLANG_OPER_CALL) {
+ /* Special case of: x = f(a, b)
+ * Replace with f(a, b, x) (where x == hidden __retVal out param)
+ *
+ * XXX this could be even more effective if we could accomodate
+ * cases such as "v.x = f();" - would help with typical vertex
+ * transformation.
+ */
+ n = _slang_gen_function_call_name(A,
+ (const char *) oper->children[1].a_id,
+ &oper->children[1], &oper->children[0]);
+ }
+ else {
+ slang_ir_node *lhs, *rhs;
+
+ /* lhs and rhs type checking */
+ if (!_slang_assignment_compatible(A,
+ &oper->children[0],
+ &oper->children[1])) {
+ slang_info_log_error(A->log, "incompatible types in assignment");
+ return NULL;
+ }
+
+ lhs = _slang_gen_operation(A, &oper->children[0]);
+ if (!lhs) {
+ return NULL;
+ }
+
+ if (!lhs->Store) {
+ slang_info_log_error(A->log,
+ "invalid left hand side for assignment");
+ return NULL;
+ }
+
+ /* check that lhs is writable */
+ if (!is_store_writable(A, lhs->Store)) {
+ slang_info_log_error(A->log,
+ "illegal assignment to read-only l-value");
+ return NULL;
+ }
+
+ rhs = _slang_gen_operation(A, &oper->children[1]);
+ if (lhs && rhs) {
+ /* convert lhs swizzle into writemask */
+ const GLuint swizzle = root_swizzle(lhs->Store);
+ GLuint writemask, newSwizzle = 0x0;
+ if (!swizzle_to_writemask(A, swizzle, &writemask, &newSwizzle)) {
+ /* Non-simple writemask, need to swizzle right hand side in
+ * order to put components into the right place.
+ */
+ rhs = _slang_gen_swizzle(rhs, newSwizzle);
+ }
+ n = new_node2(IR_COPY, lhs, rhs);
+ }
+ else {
+ return NULL;
+ }
+ }
+
+ if (n && pred) {
+ /* predicate the assignment code on __notRetFlag */
+ slang_ir_node *top, *cond;
+
+ cond = _slang_gen_operation(A, pred);
+ top = new_if(cond, n, NULL);
+ return top;
+ }
+ return n;
+}
+
+
+/**
+ * Generate IR tree for referencing a field in a struct (or basic vector type)
+ */
+static slang_ir_node *
+_slang_gen_struct_field(slang_assemble_ctx * A, slang_operation *oper)
+{
+ slang_typeinfo ti;
+
+ /* type of struct */
+ slang_typeinfo_construct(&ti);
+ typeof_operation(A, &oper->children[0], &ti);
+
+ if (_slang_type_is_vector(ti.spec.type)) {
+ /* the field should be a swizzle */
+ const GLuint rows = _slang_type_dim(ti.spec.type);
+ slang_swizzle swz;
+ slang_ir_node *n;
+ GLuint swizzle;
+ if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
+ slang_info_log_error(A->log, "Bad swizzle");
+ return NULL;
+ }
+ swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
+ swz.swizzle[1],
+ swz.swizzle[2],
+ swz.swizzle[3]);
+
+ n = _slang_gen_operation(A, &oper->children[0]);
+ /* create new parent node with swizzle */
+ if (n)
+ n = _slang_gen_swizzle(n, swizzle);
+ return n;
+ }
+ else if ( ti.spec.type == SLANG_SPEC_FLOAT
+ || ti.spec.type == SLANG_SPEC_INT
+ || ti.spec.type == SLANG_SPEC_BOOL) {
+ const GLuint rows = 1;
+ slang_swizzle swz;
+ slang_ir_node *n;
+ GLuint swizzle;
+ if (!_slang_is_swizzle((char *) oper->a_id, rows, &swz)) {
+ slang_info_log_error(A->log, "Bad swizzle");
+ }
+ swizzle = MAKE_SWIZZLE4(swz.swizzle[0],
+ swz.swizzle[1],
+ swz.swizzle[2],
+ swz.swizzle[3]);
+ n = _slang_gen_operation(A, &oper->children[0]);
+ /* create new parent node with swizzle */
+ n = _slang_gen_swizzle(n, swizzle);
+ return n;
+ }
+ else {
+ /* the field is a structure member (base.field) */
+ /* oper->children[0] is the base */
+ /* oper->a_id is the field name */
+ slang_ir_node *base, *n;
+ slang_typeinfo field_ti;
+ GLint fieldSize, fieldOffset = -1;
+
+ /* type of field */
+ slang_typeinfo_construct(&field_ti);
+ typeof_operation(A, oper, &field_ti);
+
+ fieldSize = _slang_sizeof_type_specifier(&field_ti.spec);
+ if (fieldSize > 0)
+ fieldOffset = _slang_field_offset(&ti.spec, oper->a_id);
+
+ if (fieldSize == 0 || fieldOffset < 0) {
+ const char *structName;
+ if (ti.spec._struct)
+ structName = (char *) ti.spec._struct->a_name;
+ else
+ structName = "unknown";
+ slang_info_log_error(A->log,
+ "\"%s\" is not a member of struct \"%s\"",
+ (char *) oper->a_id, structName);
+ return NULL;
+ }
+ assert(fieldSize >= 0);
+
+ base = _slang_gen_operation(A, &oper->children[0]);
+ if (!base) {
+ /* error msg should have already been logged */
+ return NULL;
+ }
+
+ n = new_node1(IR_FIELD, base);
+ if (!n)
+ return NULL;
+
+ n->Field = (char *) oper->a_id;
+
+ /* Store the field's offset in storage->Index */
+ n->Store = _slang_new_ir_storage(base->Store->File,
+ fieldOffset,
+ fieldSize);
+
+ return n;
+ }
+}
+
+
+/**
+ * Gen code for array indexing.
+ */
+static slang_ir_node *
+_slang_gen_array_element(slang_assemble_ctx * A, slang_operation *oper)
+{
+ slang_typeinfo array_ti;
+
+ /* get array's type info */
+ slang_typeinfo_construct(&array_ti);
+ typeof_operation(A, &oper->children[0], &array_ti);
+
+ if (_slang_type_is_vector(array_ti.spec.type)) {
+ /* indexing a simple vector type: "vec4 v; v[0]=p;" */
+ /* translate the index into a swizzle/writemask: "v.x=p" */
+ const GLuint max = _slang_type_dim(array_ti.spec.type);
+ GLint index;
+ slang_ir_node *n;
+
+ index = (GLint) oper->children[1].literal[0];
+ if (oper->children[1].type != SLANG_OPER_LITERAL_INT ||
+ index >= (GLint) max) {
+#if 0
+ slang_info_log_error(A->log, "Invalid array index for vector type");
+ printf("type = %d\n", oper->children[1].type);
+ printf("index = %d, max = %d\n", index, max);
+ printf("array = %s\n", (char*)oper->children[0].a_id);
+ printf("index = %s\n", (char*)oper->children[1].a_id);
+ return NULL;
+#else
+ index = 0;
+#endif
+ }
+
+ n = _slang_gen_operation(A, &oper->children[0]);
+ if (n) {
+ /* use swizzle to access the element */
+ GLuint swizzle = MAKE_SWIZZLE4(SWIZZLE_X + index,
+ SWIZZLE_NIL,
+ SWIZZLE_NIL,
+ SWIZZLE_NIL);
+ n = _slang_gen_swizzle(n, swizzle);
+ }
+ return n;
+ }
+ else {
+ /* conventional array */
+ slang_typeinfo elem_ti;
+ slang_ir_node *elem, *array, *index;
+ GLint elemSize, arrayLen;
+
+ /* size of array element */
+ slang_typeinfo_construct(&elem_ti);
+ typeof_operation(A, oper, &elem_ti);
+ elemSize = _slang_sizeof_type_specifier(&elem_ti.spec);
+
+ if (_slang_type_is_matrix(array_ti.spec.type))
+ arrayLen = _slang_type_dim(array_ti.spec.type);
+ else
+ arrayLen = array_ti.array_len;
+
+ slang_typeinfo_destruct(&array_ti);
+ slang_typeinfo_destruct(&elem_ti);
+
+ if (elemSize <= 0) {
+ /* unknown var or type */
+ slang_info_log_error(A->log, "Undefined variable or type");
+ return NULL;
+ }
+
+ array = _slang_gen_operation(A, &oper->children[0]);
+ index = _slang_gen_operation(A, &oper->children[1]);
+ if (array && index) {
+ /* bounds check */
+ GLint constIndex = -1;
+ if (index->Opcode == IR_FLOAT) {
+ constIndex = (int) index->Value[0];
+ if (constIndex < 0 || constIndex >= arrayLen) {
+ slang_info_log_error(A->log,
+ "Array index out of bounds (index=%d size=%d)",
+ constIndex, arrayLen);
+ _slang_free_ir_tree(array);
+ _slang_free_ir_tree(index);
+ return NULL;
+ }
+ }
+
+ if (!array->Store) {
+ slang_info_log_error(A->log, "Invalid array");
+ return NULL;
+ }
+
+ elem = new_node2(IR_ELEMENT, array, index);
+
+ /* The storage info here will be updated during code emit */
+ elem->Store = _slang_new_ir_storage(array->Store->File,
+ array->Store->Index,
+ elemSize);
+ elem->Store->Swizzle = _slang_var_swizzle(elemSize, 0);
+ return elem;
+ }
+ else {
+ _slang_free_ir_tree(array);
+ _slang_free_ir_tree(index);
+ return NULL;
+ }
+ }
+}
+
+
+static slang_ir_node *
+_slang_gen_compare(slang_assemble_ctx *A, slang_operation *oper,
+ slang_ir_opcode opcode)
+{
+ slang_typeinfo t0, t1;
+ slang_ir_node *n;
+
+ slang_typeinfo_construct(&t0);
+ typeof_operation(A, &oper->children[0], &t0);
+
+ slang_typeinfo_construct(&t1);
+ typeof_operation(A, &oper->children[0], &t1);
+
+ if (t0.spec.type == SLANG_SPEC_ARRAY ||
+ t1.spec.type == SLANG_SPEC_ARRAY) {
+ slang_info_log_error(A->log, "Illegal array comparison");
+ return NULL;
+ }
+
+ if (oper->type != SLANG_OPER_EQUAL &&
+ oper->type != SLANG_OPER_NOTEQUAL) {
+ /* <, <=, >, >= can only be used with scalars */
+ if ((t0.spec.type != SLANG_SPEC_INT &&
+ t0.spec.type != SLANG_SPEC_FLOAT) ||
+ (t1.spec.type != SLANG_SPEC_INT &&
+ t1.spec.type != SLANG_SPEC_FLOAT)) {
+ slang_info_log_error(A->log, "Incompatible type(s) for inequality operator");
+ return NULL;
+ }
+ }
+
+ n = new_node2(opcode,
+ _slang_gen_operation(A, &oper->children[0]),
+ _slang_gen_operation(A, &oper->children[1]));
+
+ /* result is a bool (size 1) */
+ n->Store = _slang_new_ir_storage(PROGRAM_TEMPORARY, -1, 1);
+
+ return n;
+}
+
+
+#if 0
+static void
+print_vars(slang_variable_scope *s)
+{
+ int i;
+ printf("vars: ");
+ for (i = 0; i < s->num_variables; i++) {
+ printf("%s %d, \n",
+ (char*) s->variables[i]->a_name,
+ s->variables[i]->declared);
+ }
+
+ printf("\n");
+}
+#endif
+
+
+#if 0
+static void
+_slang_undeclare_vars(slang_variable_scope *locals)
+{
+ if (locals->num_variables > 0) {
+ int i;
+ for (i = 0; i < locals->num_variables; i++) {
+ slang_variable *v = locals->variables[i];
+ printf("undeclare %s at %p\n", (char*) v->a_name, v);
+ v->declared = GL_FALSE;
+ }
+ }
+}
+#endif
+
+
+/**
+ * Generate IR tree for a slang_operation (AST node)
+ */
+static slang_ir_node *
+_slang_gen_operation(slang_assemble_ctx * A, slang_operation *oper)
+{
+ switch (oper->type) {
+ case SLANG_OPER_BLOCK_NEW_SCOPE:
+ {
+ slang_ir_node *n;
+
+ _slang_push_var_table(A->vartable);
+
+ oper->type = SLANG_OPER_BLOCK_NO_NEW_SCOPE; /* temp change */
+ n = _slang_gen_operation(A, oper);
+ oper->type = SLANG_OPER_BLOCK_NEW_SCOPE; /* restore */
+
+ _slang_pop_var_table(A->vartable);
+
+ /*_slang_undeclare_vars(oper->locals);*/
+ /*print_vars(oper->locals);*/
+
+ if (n)
+ n = new_node1(IR_SCOPE, n);
+ return n;
+ }
+ break;
+
+ case SLANG_OPER_BLOCK_NO_NEW_SCOPE:
+ /* list of operations */
+ if (oper->num_children > 0)
+ {
+ slang_ir_node *n, *tree = NULL;
+ GLuint i;
+
+ for (i = 0; i < oper->num_children; i++) {
+ n = _slang_gen_operation(A, &oper->children[i]);
+ if (!n) {
+ _slang_free_ir_tree(tree);
+ return NULL; /* error must have occured */
+ }
+ tree = new_seq(tree, n);
+ }
+
+ return tree;
+ }
+ else {
+ return new_node0(IR_NOP);
+ }
+
+ case SLANG_OPER_EXPRESSION:
+ return _slang_gen_operation(A, &oper->children[0]);
+
+ case SLANG_OPER_FOR:
+ return _slang_gen_for(A, oper);
+ case SLANG_OPER_DO:
+ return _slang_gen_do(A, oper);
+ case SLANG_OPER_WHILE:
+ return _slang_gen_while(A, oper);
+ case SLANG_OPER_BREAK:
+ if (!current_loop_oper(A)) {
+ slang_info_log_error(A->log, "'break' not in loop");
+ return NULL;
+ }
+ return new_break(current_loop_ir(A));
+ case SLANG_OPER_CONTINUE:
+ if (!current_loop_oper(A)) {
+ slang_info_log_error(A->log, "'continue' not in loop");
+ return NULL;
+ }
+ return _slang_gen_continue(A, oper);
+ case SLANG_OPER_DISCARD:
+ return new_node0(IR_KILL);
+
+ case SLANG_OPER_EQUAL:
+ return _slang_gen_compare(A, oper, IR_EQUAL);
+ case SLANG_OPER_NOTEQUAL:
+ return _slang_gen_compare(A, oper, IR_NOTEQUAL);
+ case SLANG_OPER_GREATER:
+ return _slang_gen_compare(A, oper, IR_SGT);
+ case SLANG_OPER_LESS:
+ return _slang_gen_compare(A, oper, IR_SLT);
+ case SLANG_OPER_GREATEREQUAL:
+ return _slang_gen_compare(A, oper, IR_SGE);
+ case SLANG_OPER_LESSEQUAL:
+ return _slang_gen_compare(A, oper, IR_SLE);
+ case SLANG_OPER_ADD:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "+", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_SUBTRACT:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "-", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_MULTIPLY:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "*", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_DIVIDE:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "/", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_MINUS:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 1);
+ n = _slang_gen_function_call_name(A, "-", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_PLUS:
+ /* +expr --> do nothing */
+ return _slang_gen_operation(A, &oper->children[0]);
+ case SLANG_OPER_VARIABLE_DECL:
+ return _slang_gen_declaration(A, oper);
+ case SLANG_OPER_ASSIGN:
+ return _slang_gen_assignment(A, oper);
+ case SLANG_OPER_ADDASSIGN:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "+=", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_SUBASSIGN:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "-=", oper, NULL);
+ return n;
+ }
+ break;
+ case SLANG_OPER_MULASSIGN:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "*=", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_DIVASSIGN:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_function_call_name(A, "/=", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_LOGICALAND:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_logical_and(A, oper);
+ return n;
+ }
+ case SLANG_OPER_LOGICALOR:
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 2);
+ n = _slang_gen_logical_or(A, oper);
+ return n;
+ }
+ case SLANG_OPER_LOGICALXOR:
+ return _slang_gen_xor(A, oper);
+ case SLANG_OPER_NOT:
+ return _slang_gen_not(A, oper);
+ case SLANG_OPER_SELECT: /* b ? x : y */
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 3);
+ n = _slang_gen_select(A, oper);
+ return n;
+ }
+
+ case SLANG_OPER_ASM:
+ return _slang_gen_asm(A, oper, NULL);
+ case SLANG_OPER_CALL:
+ return _slang_gen_function_call_name(A, (const char *) oper->a_id,
+ oper, NULL);
+ case SLANG_OPER_METHOD:
+ return _slang_gen_method_call(A, oper);
+ case SLANG_OPER_RETURN:
+ return _slang_gen_return(A, oper);
+ case SLANG_OPER_RETURN_INLINED:
+ return _slang_gen_return(A, oper);
+ case SLANG_OPER_LABEL:
+ return new_label(oper->label);
+ case SLANG_OPER_IDENTIFIER:
+ return _slang_gen_variable(A, oper);
+ case SLANG_OPER_IF:
+ return _slang_gen_if(A, oper);
+ case SLANG_OPER_FIELD:
+ return _slang_gen_struct_field(A, oper);
+ case SLANG_OPER_SUBSCRIPT:
+ return _slang_gen_array_element(A, oper);
+ case SLANG_OPER_LITERAL_FLOAT:
+ /* fall-through */
+ case SLANG_OPER_LITERAL_INT:
+ /* fall-through */
+ case SLANG_OPER_LITERAL_BOOL:
+ return new_float_literal(oper->literal, oper->literal_size);
+
+ case SLANG_OPER_POSTINCREMENT: /* var++ */
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 1);
+ n = _slang_gen_function_call_name(A, "__postIncr", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_POSTDECREMENT: /* var-- */
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 1);
+ n = _slang_gen_function_call_name(A, "__postDecr", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_PREINCREMENT: /* ++var */
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 1);
+ n = _slang_gen_function_call_name(A, "++", oper, NULL);
+ return n;
+ }
+ case SLANG_OPER_PREDECREMENT: /* --var */
+ {
+ slang_ir_node *n;
+ assert(oper->num_children == 1);
+ n = _slang_gen_function_call_name(A, "--", oper, NULL);
+ return n;
+ }
+
+ case SLANG_OPER_NON_INLINED_CALL:
+ case SLANG_OPER_SEQUENCE:
+ {
+ slang_ir_node *tree = NULL;
+ GLuint i;
+ for (i = 0; i < oper->num_children; i++) {
+ slang_ir_node *n = _slang_gen_operation(A, &oper->children[i]);
+ tree = new_seq(tree, n);
+ if (n)
+ tree->Store = n->Store;
+ }
+ if (oper->type == SLANG_OPER_NON_INLINED_CALL) {
+ tree = new_function_call(tree, oper->label);
+ }
+ return tree;
+ }
+
+ case SLANG_OPER_NONE:
+ case SLANG_OPER_VOID:
+ /* returning NULL here would generate an error */
+ return new_node0(IR_NOP);
+
+ default:
+ _mesa_problem(NULL, "bad node type %d in _slang_gen_operation",
+ oper->type);
+ return new_node0(IR_NOP);
+ }
+
+ return NULL;
+}
+
+
+/**
+ * Check if the given type specifier is a rectangular texture sampler.
+ */
+static GLboolean
+is_rect_sampler_spec(const slang_type_specifier *spec)
+{
+ while (spec->_array) {
+ spec = spec->_array;
+ }
+ return spec->type == SLANG_SPEC_SAMPLER_RECT ||
+ spec->type == SLANG_SPEC_SAMPLER_RECT_SHADOW;
+}
+
+
+
+/**
+ * Called by compiler when a global variable has been parsed/compiled.
+ * Here we examine the variable's type to determine what kind of register
+ * storage will be used.
+ *
+ * A uniform such as "gl_Position" will become the register specification
+ * (PROGRAM_OUTPUT, VERT_RESULT_HPOS). Or, uniform "gl_FogFragCoord"
+ * will be (PROGRAM_INPUT, FRAG_ATTRIB_FOGC).
+ *
+ * Samplers are interesting. For "uniform sampler2D tex;" we'll specify
+ * (PROGRAM_SAMPLER, index) where index is resolved at link-time to an
+ * actual texture unit (as specified by the user calling glUniform1i()).
+ */
+GLboolean
+_slang_codegen_global_variable(slang_assemble_ctx *A, slang_variable *var,
+ slang_unit_type type)
+{
+ GET_CURRENT_CONTEXT(ctx);
+ struct gl_program *prog = A->program;
+ const char *varName = (char *) var->a_name;
+ GLboolean success = GL_TRUE;
+ slang_ir_storage *store = NULL;
+ int dbg = 0;
+ const GLenum datatype = _slang_gltype_from_specifier(&var->type.specifier);
+ const GLint size = _slang_sizeof_type_specifier(&var->type.specifier);
+ const GLint arrayLen = _slang_array_length(var);
+ const GLint totalSize = _slang_array_size(size, arrayLen);
+ GLint texIndex = sampler_to_texture_index(var->type.specifier.type);
+
+ var->is_global = GL_TRUE;
+
+ /* check for sampler2D arrays */
+ if (texIndex == -1 && var->type.specifier._array)
+ texIndex = sampler_to_texture_index(var->type.specifier._array->type);
+
+ if (texIndex != -1) {
+ /* This is a texture sampler variable...
+ * store->File = PROGRAM_SAMPLER
+ * store->Index = sampler number (0..7, typically)
+ * store->Size = texture type index (1D, 2D, 3D, cube, etc)
+ */
+ if (var->initializer) {
+ slang_info_log_error(A->log, "illegal assignment to '%s'", varName);
+ return GL_FALSE;
+ }
+#if FEATURE_es2_glsl /* XXX should use FEATURE_texture_rect */
+ /* disallow rect samplers */
+ if (ctx->API == API_OPENGLES2 &&
+ is_rect_sampler_spec(&var->type.specifier)) {
+ slang_info_log_error(A->log, "invalid sampler type for '%s'", varName);
+ return GL_FALSE;
+ }
+#else
+ (void) is_rect_sampler_spec; /* silence warning */
+ (void) ctx;
+#endif
+ {
+ GLint sampNum = _mesa_add_sampler(prog->Parameters, varName, datatype);
+ store = _slang_new_ir_storage_sampler(sampNum, texIndex, totalSize);
+
+ /* If we have a sampler array, then we need to allocate the
+ * additional samplers to ensure we don't allocate them elsewhere.
+ * We can't directly use _mesa_add_sampler() as that checks the
+ * varName and gets a match, so we call _mesa_add_parameter()
+ * directly and use the last sampler number from the call above.
+ */
+ if (arrayLen > 0) {
+ GLint a = arrayLen - 1;
+ GLint i;
+ for (i = 0; i < a; i++) {
+ GLfloat value = (GLfloat)(i + sampNum + 1);
+ (void) _mesa_add_parameter(prog->Parameters, PROGRAM_SAMPLER,
+ varName, 1, datatype, &value, NULL, 0x0);
+ }
+ }
+ }
+ if (dbg) printf("SAMPLER ");
+ }
+ else if (var->type.qualifier == SLANG_QUAL_UNIFORM) {
+ /* Uniform variable */
+ const GLuint swizzle = _slang_var_swizzle(totalSize, 0);
+
+ if (prog) {
+ /* user-defined uniform */
+ if (datatype == GL_NONE) {
+ if ((var->type.specifier.type == SLANG_SPEC_ARRAY &&
+ var->type.specifier._array->type == SLANG_SPEC_STRUCT) ||
+ (var->type.specifier.type == SLANG_SPEC_STRUCT)) {
+ /* temporary work-around */
+ GLenum datatype = GL_FLOAT;
+ GLint uniformLoc = _mesa_add_uniform(prog->Parameters, varName,
+ totalSize, datatype, NULL);
+ store = _slang_new_ir_storage_swz(PROGRAM_UNIFORM, uniformLoc,
+ totalSize, swizzle);
+
+ if (arrayLen > 0) {
+ GLint a = arrayLen - 1;
+ GLint i;
+ for (i = 0; i < a; i++) {
+ GLfloat value = (GLfloat)(i + uniformLoc + 1);
+ (void) _mesa_add_parameter(prog->Parameters, PROGRAM_UNIFORM,
+ varName, 1, datatype, &value, NULL, 0x0);
+ }
+ }
+
+ /* XXX what we need to do is unroll the struct into its
+ * basic types, creating a uniform variable for each.
+ * For example:
+ * struct foo {
+ * vec3 a;
+ * vec4 b;
+ * };
+ * uniform foo f;
+ *
+ * Should produce uniforms:
+ * "f.a" (GL_FLOAT_VEC3)
+ * "f.b" (GL_FLOAT_VEC4)
+ */
+
+ if (var->initializer) {
+ slang_info_log_error(A->log,
+ "unsupported initializer for uniform '%s'", varName);
+ return GL_FALSE;
+ }
+ }
+ else {
+ slang_info_log_error(A->log,
+ "invalid datatype for uniform variable %s",
+ varName);
+ return GL_FALSE;
+ }
+ }
+ else {
+ /* non-struct uniform */
+ if (!_slang_gen_var_decl(A, var, var->initializer))
+ return GL_FALSE;
+ store = var->store;
+ }
+ }
+ else {
+ /* pre-defined uniform, like gl_ModelviewMatrix */
+ /* We know it's a uniform, but don't allocate storage unless
+ * it's really used.
+ */
+ store = _slang_new_ir_storage_swz(PROGRAM_STATE_VAR, -1,
+ totalSize, swizzle);
+ }
+ if (dbg) printf("UNIFORM (sz %d) ", totalSize);
+ }
+ else if (var->type.qualifier == SLANG_QUAL_VARYING) {
+ /* varyings must be float, vec or mat */
+ if (!_slang_type_is_float_vec_mat(var->type.specifier.type) &&
+ var->type.specifier.type != SLANG_SPEC_ARRAY) {
+ slang_info_log_error(A->log,
+ "varying '%s' must be float/vector/matrix",
+ varName);
+ return GL_FALSE;
+ }
+
+ if (var->initializer) {
+ slang_info_log_error(A->log, "illegal initializer for varying '%s'",
+ varName);
+ return GL_FALSE;
+ }
+
+ if (prog) {
+ /* user-defined varying */
+ GLbitfield flags;
+ GLint varyingLoc;
+ GLuint swizzle;
+
+ flags = 0x0;
+ if (var->type.centroid == SLANG_CENTROID)
+ flags |= PROG_PARAM_BIT_CENTROID;
+ if (var->type.variant == SLANG_INVARIANT)
+ flags |= PROG_PARAM_BIT_INVARIANT;
+
+ varyingLoc = _mesa_add_varying(prog->Varying, varName,
+ totalSize, GL_NONE, flags);
+ swizzle = _slang_var_swizzle(size, 0);
+ store = _slang_new_ir_storage_swz(PROGRAM_VARYING, varyingLoc,
+ totalSize, swizzle);
+ }
+ else {
+ /* pre-defined varying, like gl_Color or gl_TexCoord */
+ if (type == SLANG_UNIT_FRAGMENT_BUILTIN) {
+ /* fragment program input */
+ GLuint swizzle;
+ GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
+ &swizzle);
+ assert(index >= 0);
+ assert(index < FRAG_ATTRIB_MAX);
+ store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index,
+ size, swizzle);
+ }
+ else {
+ /* vertex program output */
+ GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
+ GLuint swizzle = _slang_var_swizzle(size, 0);
+ assert(index >= 0);
+ assert(index < VERT_RESULT_MAX);
+ assert(type == SLANG_UNIT_VERTEX_BUILTIN);
+ store = _slang_new_ir_storage_swz(PROGRAM_OUTPUT, index,
+ size, swizzle);
+ }
+ if (dbg) printf("V/F ");
+ }
+ if (dbg) printf("VARYING ");
+ }
+ else if (var->type.qualifier == SLANG_QUAL_ATTRIBUTE) {
+ GLuint swizzle;
+ GLint index;
+ /* attributes must be float, vec or mat */
+ if (!_slang_type_is_float_vec_mat(var->type.specifier.type)) {
+ slang_info_log_error(A->log,
+ "attribute '%s' must be float/vector/matrix",
+ varName);
+ return GL_FALSE;
+ }
+
+ if (prog) {
+ /* user-defined vertex attribute */
+ const GLint attr = -1; /* unknown */
+ swizzle = _slang_var_swizzle(size, 0);
+ index = _mesa_add_attribute(prog->Attributes, varName,
+ size, datatype, attr);
+ assert(index >= 0);
+ index = VERT_ATTRIB_GENERIC0 + index;
+ }
+ else {
+ /* pre-defined vertex attrib */
+ index = _slang_input_index(varName, GL_VERTEX_PROGRAM_ARB, &swizzle);
+ assert(index >= 0);
+ }
+ store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
+ if (dbg) printf("ATTRIB ");
+ }
+ else if (var->type.qualifier == SLANG_QUAL_FIXEDINPUT) {
+ GLuint swizzle = SWIZZLE_XYZW; /* silence compiler warning */
+ GLint index = _slang_input_index(varName, GL_FRAGMENT_PROGRAM_ARB,
+ &swizzle);
+ store = _slang_new_ir_storage_swz(PROGRAM_INPUT, index, size, swizzle);
+ if (dbg) printf("INPUT ");
+ }
+ else if (var->type.qualifier == SLANG_QUAL_FIXEDOUTPUT) {
+ if (type == SLANG_UNIT_VERTEX_BUILTIN) {
+ GLint index = _slang_output_index(varName, GL_VERTEX_PROGRAM_ARB);
+ store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, size);
+ }
+ else {
+ GLint index = _slang_output_index(varName, GL_FRAGMENT_PROGRAM_ARB);
+ GLint specialSize = 4; /* treat all fragment outputs as float[4] */
+ assert(type == SLANG_UNIT_FRAGMENT_BUILTIN);
+ store = _slang_new_ir_storage(PROGRAM_OUTPUT, index, specialSize);
+ }
+ if (dbg) printf("OUTPUT ");
+ }
+ else if (var->type.qualifier == SLANG_QUAL_CONST && !prog) {
+ /* pre-defined global constant, like gl_MaxLights */
+ store = _slang_new_ir_storage(PROGRAM_CONSTANT, -1, size);
+ if (dbg) printf("CONST ");
+ }
+ else {
+ /* ordinary variable (may be const) */
+ slang_ir_node *n;
+
+ /* IR node to declare the variable */
+ n = _slang_gen_var_decl(A, var, var->initializer);
+
+ /* emit GPU instructions */
+ success = _slang_emit_code(n, A->vartable, A->program, A->pragmas, GL_FALSE, A->log);
+
+ _slang_free_ir_tree(n);
+ }
+
+ if (dbg) printf("GLOBAL VAR %s idx %d\n", (char*) var->a_name,
+ store ? store->Index : -2);
+
+ if (store)
+ var->store = store; /* save var's storage info */
+
+ var->declared = GL_TRUE;
+
+ return success;
+}
+
+
+/**
+ * Produce an IR tree from a function AST (fun->body).
+ * Then call the code emitter to convert the IR tree into gl_program
+ * instructions.
+ */
+GLboolean
+_slang_codegen_function(slang_assemble_ctx * A, slang_function * fun)
+{
+ slang_ir_node *n;
+ GLboolean success = GL_TRUE;
+
+ if (strcmp((char *) fun->header.a_name, "main") != 0) {
+ /* we only really generate code for main, all other functions get
+ * inlined or codegen'd upon an actual call.
+ */
+#if 0
+ /* do some basic error checking though */
+ if (fun->header.type.specifier.type != SLANG_SPEC_VOID) {
+ /* check that non-void functions actually return something */
+ slang_operation *op
+ = _slang_find_node_type(fun->body, SLANG_OPER_RETURN);
+ if (!op) {
+ slang_info_log_error(A->log,
+ "function \"%s\" has no return statement",
+ (char *) fun->header.a_name);
+ printf(
+ "function \"%s\" has no return statement\n",
+ (char *) fun->header.a_name);
+ return GL_FALSE;
+ }
+ }
+#endif
+ return GL_TRUE; /* not an error */
+ }
+
+#if 0
+ printf("\n*********** codegen_function %s\n", (char *) fun->header.a_name);
+ slang_print_function(fun, 1);
+#endif
+
+ /* should have been allocated earlier: */
+ assert(A->program->Parameters );
+ assert(A->program->Varying);
+ assert(A->vartable);
+
+ A->LoopDepth = 0;
+ A->UseReturnFlag = GL_FALSE;
+ A->CurFunction = fun;
+
+ /* fold constant expressions, etc. */
+ _slang_simplify(fun->body, &A->space, A->atoms);
+
+#if 0
+ printf("\n*********** simplified %s\n", (char *) fun->header.a_name);
+ slang_print_function(fun, 1);
+#endif
+
+ /* Create an end-of-function label */
+ A->curFuncEndLabel = _slang_label_new("__endOfFunc__main");
+
+ /* push new vartable scope */
+ _slang_push_var_table(A->vartable);
+
+ /* Generate IR tree for the function body code */
+ n = _slang_gen_operation(A, fun->body);
+ if (n)
+ n = new_node1(IR_SCOPE, n);
+
+ /* pop vartable, restore previous */
+ _slang_pop_var_table(A->vartable);
+
+ if (!n) {
+ /* XXX record error */
+ return GL_FALSE;
+ }
+
+ /* append an end-of-function-label to IR tree */
+ n = new_seq(n, new_label(A->curFuncEndLabel));
+
+ /*_slang_label_delete(A->curFuncEndLabel);*/
+ A->curFuncEndLabel = NULL;
+
+#if 0
+ printf("************* New AST for %s *****\n", (char*)fun->header.a_name);
+ slang_print_function(fun, 1);
+#endif
+#if 0
+ printf("************* IR for %s *******\n", (char*)fun->header.a_name);
+ _slang_print_ir_tree(n, 0);
+#endif
+#if 0
+ printf("************* End codegen function ************\n\n");
+#endif
+
+ if (A->UnresolvedRefs) {
+ /* Can't codegen at this time.
+ * At link time we'll concatenate all the vertex shaders and/or all
+ * the fragment shaders and try recompiling.
+ */
+ return GL_TRUE;
+ }
+
+ /* Emit program instructions */
+ success = _slang_emit_code(n, A->vartable, A->program, A->pragmas, GL_TRUE, A->log);
+ _slang_free_ir_tree(n);
+
+ /* free codegen context */
+ /*
+ free(A->codegen);
+ */
+
+ return success;
+}
+