summaryrefslogtreecommitdiff
path: root/glsl_types.cpp
blob: f7ef4a302b9152423d8630b2b6fad05c79606376 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*
 * Copyright © 2009 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 */

#include <stdlib.h>
#include "glsl_symbol_table.h"
#include "glsl_parser_extras.h"
#include "glsl_types.h"
#include "builtin_types.h"


static void
add_types_to_symbol_table(glsl_symbol_table *symtab,
			  const struct glsl_type *types,
			  unsigned num_types)
{
   unsigned i;

   for (i = 0; i < num_types; i++) {
      symtab->add_type(types[i].name, & types[i]);
   }
}


static void
generate_110_types(glsl_symbol_table *symtab)
{
   add_types_to_symbol_table(symtab, builtin_core_types,
			     Elements(builtin_core_types));
   add_types_to_symbol_table(symtab, builtin_structure_types,
			     Elements(builtin_structure_types));
   add_types_to_symbol_table(symtab, builtin_110_deprecated_structure_types,
			     Elements(builtin_110_deprecated_structure_types));
   add_types_to_symbol_table(symtab, & void_type, 1);
}


static void
generate_120_types(glsl_symbol_table *symtab)
{
   generate_110_types(symtab);

   add_types_to_symbol_table(symtab, builtin_120_types,
			     Elements(builtin_120_types));
}


static void
generate_130_types(glsl_symbol_table *symtab)
{
   generate_120_types(symtab);

   add_types_to_symbol_table(symtab, builtin_130_types,
			     Elements(builtin_130_types));
}


void
_mesa_glsl_initialize_types(struct _mesa_glsl_parse_state *state)
{
   switch (state->language_version) {
   case 110:
      generate_110_types(state->symbols);
      break;
   case 120:
      generate_120_types(state->symbols);
      break;
   case 130:
      generate_130_types(state->symbols);
      break;
   default:
      /* error */
      break;
   }
}


const glsl_type *glsl_type::get_base_type() const
{
   switch (base_type) {
   case GLSL_TYPE_UINT:
      return glsl_uint_type;
   case GLSL_TYPE_INT:
      return glsl_int_type;
   case GLSL_TYPE_FLOAT:
      return glsl_float_type;
   case GLSL_TYPE_BOOL:
      return glsl_bool_type;
   default:
      return glsl_error_type;
   }
}


/**
 * Generate the function intro for a constructor
 *
 * \param type         Data type to be constructed
 * \param count        Number of parameters to this concrete constructor.  Most
 *                     types have at least two constructors.  One will take a
 *                     single scalar parameter and the other will take "N"
 *                     scalar parameters.
 * \param parameters   Storage for the list of parameters.  These are
 *                     typically stored in an \c ir_function_signature.
 * \param instructions Storage for the preamble and body of the function.
 * \param declarations Pointers to the variable declarations for the function
 *                     parameters.  These are used later to avoid having to use
 *                     the symbol table.
 */
static void
generate_constructor_intro(const glsl_type *type, unsigned parameter_count,
			   exec_list *parameters, exec_list *instructions,
			   ir_variable **declarations)
{
   /* Names of parameters used in vector and matrix constructors
    */
   static const char *const names[] = {
      "a", "b", "c", "d", "e", "f", "g", "h",
      "i", "j", "k", "l", "m", "n", "o", "p",
   };

   assert(parameter_count <= Elements(names));

   const glsl_type *const parameter_type = type->get_base_type();

   ir_label *const label = new ir_label(type->name);
   instructions->push_tail(label);

   for (unsigned i = 0; i < parameter_count; i++) {
      ir_variable *var = new ir_variable(parameter_type, names[i]);

      var->mode = ir_var_in;
      parameters->push_tail(var);

      var = new ir_variable(parameter_type, names[i]);

      var->mode = ir_var_in;
      instructions->push_tail(var);

      declarations[i] = var;
   }

   ir_variable *retval = new ir_variable(type, "__retval");
   instructions->push_tail(retval);

   declarations[16] = retval;
}


/**
 * Generate the body of a vector constructor that takes a single scalar
 */
static void
generate_vec_body_from_scalar(exec_list *instructions,
			      ir_variable **declarations)
{
   ir_instruction *inst;

   /* Generate a single assignment of the parameter to __retval.x and return
    * __retval.xxxx for however many vector components there are.
    */
   ir_dereference *const lhs = new ir_dereference(declarations[16]);
   ir_dereference *const rhs = new ir_dereference(declarations[0]);

   lhs->set_swizzle(0, 0, 0, 0, 1);

   inst = new ir_assignment(lhs, rhs, NULL);
   instructions->push_tail(inst);

   ir_dereference *const retval = new ir_dereference(declarations[16]);

   retval->set_swizzle(0, 0, 0, 0, declarations[16]->type->vector_elements);

   inst = new ir_return((ir_expression *) retval);
   instructions->push_tail(inst);
}


/**
 * Generate the body of a vector constructor that takes multiple scalars
 */
static void
generate_vec_body_from_N_scalars(exec_list *instructions,
				 ir_variable **declarations)
{
   ir_instruction *inst;
   const glsl_type *const vec_type = declarations[16]->type;


   /* Generate an assignment of each parameter to a single component of
    * __retval.x and return __retval.
    */
   for (unsigned i = 0; i < vec_type->vector_elements; i++) {
      ir_dereference *const lhs = new ir_dereference(declarations[16]);
      ir_dereference *const rhs = new ir_dereference(declarations[i]);

      lhs->selector.swizzle.x = i;
      lhs->selector.swizzle.num_components = 1;

      inst = new ir_assignment(lhs, rhs, NULL);
      instructions->push_tail(inst);
   }

   ir_dereference *retval = new ir_dereference(declarations[16]);

   inst = new ir_return((ir_expression *) retval);
   instructions->push_tail(inst);
}


/**
 * Generate the body of a matrix constructor that takes a single scalar
 */
static void
generate_mat_body_from_scalar(exec_list *instructions,
			      ir_variable **declarations)
{
   ir_instruction *inst;

   /* Generate an assignment of the parameter to the X component of a
    * temporary vector.  Set the remaining fields of the vector to 0.  The
    * size of the vector is equal to the number of rows of the matrix.
    *
    * Set each column of the matrix to a successive "rotation" of the
    * temporary vector.  This fills the matrix with 0s, but writes the single
    * scalar along the matrix's diagonal.
    *
    * For a mat4x3, this is equivalent to:
    *
    *   vec3 tmp;
    *   mat4x3 __retval;
    *   tmp.x = a;
    *   tmp.y = 0.0;
    *   tmp.z = 0.0;
    *   __retval[0] = tmp.xyy;
    *   __retval[1] = tmp.yxy;
    *   __retval[2] = tmp.yyx;
    *   __retval[3] = tmp.yyy;
    */
   const glsl_type *const column_type = declarations[16]->type->column_type();
   const glsl_type *const row_type = declarations[16]->type->row_type();
   ir_variable *const column = new ir_variable(column_type, "v");

   instructions->push_tail(column);

   ir_dereference *const lhs = new ir_dereference(column);
   ir_dereference *const rhs = new ir_dereference(declarations[0]);

   lhs->set_swizzle(0, 0, 0, 0, 1);

   inst = new ir_assignment(lhs, rhs, NULL);
   instructions->push_tail(inst);

   const float z = 0.0f;
   ir_constant *const zero = new ir_constant(glsl_float_type, &z);

   for (unsigned i = 1; i < column_type->vector_elements; i++) {
      ir_dereference *const lhs = new ir_dereference(column);

      lhs->set_swizzle(i, 0, 0, 0, 1);

      inst = new ir_assignment(lhs, zero, NULL);
      instructions->push_tail(inst);
   }


   for (unsigned i = 0; i < row_type->vector_elements; i++) {
      static const unsigned swiz[] = { 1, 1, 1, 0, 1, 1, 1 };
      ir_dereference *const rhs = new ir_dereference(column);

      /* This will be .xyyy when i=0, .yxyy when i=1, etc.
       */
      rhs->set_swizzle(swiz[3 - i], swiz[4 - i], swiz[5 - i], swiz[6 - i],
		       column_type->vector_elements);

      ir_constant *const idx = new ir_constant(glsl_int_type, &i);
      ir_dereference *const lhs = new ir_dereference(declarations[16], idx);

      inst = new ir_assignment(lhs, rhs, NULL);
      instructions->push_tail(inst);
   }

   ir_dereference *const retval = new ir_dereference(declarations[16]);
   inst = new ir_return((ir_expression *) retval);
   instructions->push_tail(inst);
}


/**
 * Generate the body of a vector constructor that takes multiple scalars
 */
static void
generate_mat_body_from_N_scalars(exec_list *instructions,
				 ir_variable **declarations)
{
   ir_instruction *inst;
   const glsl_type *const row_type = declarations[16]->type->row_type();
   const glsl_type *const column_type = declarations[16]->type->column_type();


   /* Generate an assignment of each parameter to a single component of
    * of a particular column of __retval and return __retval.
    */
   for (unsigned i = 0; i < column_type->vector_elements; i++) {
      for (unsigned j = 0; j < row_type->vector_elements; j++) {
	 ir_constant *row_index = new ir_constant(glsl_int_type, &i);
	 ir_dereference *const row_access =
	    new ir_dereference(declarations[16], row_index);

	 ir_dereference *const component_access =
	    new ir_dereference(row_access);

	 component_access->selector.swizzle.x = j;
	 component_access->selector.swizzle.num_components = 1;

	 const unsigned param = (i * row_type->vector_elements) + j;
	 ir_dereference *const rhs = new ir_dereference(declarations[param]);

	 inst = new ir_assignment(component_access, rhs, NULL);
	 instructions->push_tail(inst);
      }
   }

   ir_dereference *retval = new ir_dereference(declarations[16]);

   inst = new ir_return((ir_expression *) retval);
   instructions->push_tail(inst);
}


/**
 * Generate the constructors for a set of GLSL types
 *
 * Constructor implementations are added to \c instructions, and the symbols
 * are added to \c symtab.
 */
static void
generate_constructor(glsl_symbol_table *symtab, const struct glsl_type *types,
		     unsigned num_types, exec_list *instructions)
{
   ir_variable *declarations[17];

   for (unsigned i = 0; i < num_types; i++) {
      /* Only numeric and boolean vectors and matrices get constructors here.
       * Structures need to be handled elsewhere.  It is expected that scalar
       * constructors are never actually called, so they are not generated.
       */
      if (!types[i].is_numeric() && !types[i].is_boolean())
	 continue;

      if (types[i].is_scalar())
	 continue;

      /* Generate the function name and add it to the symbol table.
       */
      ir_function *const f = new ir_function(types[i].name);

      bool added = symtab->add_function(types[i].name, f);
      assert(added);


      /* Each type has several basic constructors.  The total number of forms
       * depends on the derived type.
       *
       * Vectors:  1 scalar, N scalars
       * Matrices: 1 scalar, NxM scalars
       *
       * Several possible types of constructors are not included in this list.
       *
       * Scalar constructors are not included.  The expectation is that the
       * IR generator won't actually generate these as constructor calls.  The
       * expectation is that it will just generate the necessary type
       * conversion.
       *
       * Matrix contructors from matrices are also not included.  The
       * expectation is that the IR generator will generate a call to the
       * appropriate from-scalars constructor.
       */
      ir_function_signature *const sig = new ir_function_signature(& types[i]);
      f->signatures.push_tail(sig);

      generate_constructor_intro(& types[i], 1, & sig->parameters,
				 instructions, declarations);

      if (types[i].is_vector()) {
	 generate_vec_body_from_scalar(instructions, declarations);

	 ir_function_signature *const vec_sig =
	    new ir_function_signature(& types[i]);
	 f->signatures.push_tail(vec_sig);

	 generate_constructor_intro(& types[i], types[i].vector_elements,
				    & vec_sig->parameters, instructions,
				    declarations);
	 generate_vec_body_from_N_scalars(instructions, declarations);
      } else {
	 assert(types[i].is_matrix());

	 generate_mat_body_from_scalar(instructions, declarations);

	 ir_function_signature *const mat_sig =
	    new ir_function_signature(& types[i]);
	 f->signatures.push_tail(mat_sig);

	 generate_constructor_intro(& types[i],
				    (types[i].vector_elements
				     * types[i].matrix_columns),
				    & mat_sig->parameters, instructions,
				    declarations);
	 generate_mat_body_from_N_scalars(instructions, declarations);
      }
   }
}


void
generate_110_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
   generate_constructor(symtab, builtin_core_types,
			Elements(builtin_core_types), instructions);
}


void
generate_120_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
   generate_110_constructors(symtab, instructions);

   generate_constructor(symtab, builtin_120_types,
			Elements(builtin_120_types), instructions);
}


void
generate_130_constructors(glsl_symbol_table *symtab, exec_list *instructions)
{
   generate_120_constructors(symtab, instructions);

   generate_constructor(symtab, builtin_130_types,
			Elements(builtin_130_types), instructions);
}


void
_mesa_glsl_initialize_constructors(exec_list *instructions,
				   struct _mesa_glsl_parse_state *state)
{
   switch (state->language_version) {
   case 110:
      generate_110_constructors(state->symbols, instructions);
      break;
   case 120:
      generate_120_constructors(state->symbols, instructions);
      break;
   case 130:
      generate_130_constructors(state->symbols, instructions);
      break;
   default:
      /* error */
      break;
   }
}


const glsl_type *
glsl_type::get_instance(unsigned base_type, unsigned rows, unsigned columns)
{
   if ((rows < 1) || (rows > 4) || (columns < 1) || (columns > 4))
      return glsl_error_type;


   /* Treat GLSL vectors as Nx1 matrices.
    */
   if (columns == 1) {
      switch (base_type) {
      case GLSL_TYPE_UINT:
	 return glsl_uint_type + (rows - 1);
      case GLSL_TYPE_INT:
	 return glsl_int_type + (rows - 1);
      case GLSL_TYPE_FLOAT:
	 return glsl_float_type + (rows - 1);
      case GLSL_TYPE_BOOL:
	 return glsl_bool_type + (rows - 1);
      default:
	 return glsl_error_type;
      }
   } else {
      if ((base_type != GLSL_TYPE_FLOAT) || (rows == 1))
	 return glsl_error_type;

      /* GLSL matrix types are named mat{COLUMNS}x{ROWS}.  Only the following
       * combinations are valid:
       *
       *   1 2 3 4
       * 1
       * 2   x x x
       * 3   x x x
       * 4   x x x
       */
#define IDX(c,r) (((c-1)*3) + (r-1))

      switch (IDX(columns, rows)) {
      case IDX(2,2): return mat2_type;
      case IDX(2,3): return mat2x3_type;
      case IDX(2,4): return mat2x4_type;
      case IDX(3,2): return mat3x2_type;
      case IDX(3,3): return mat3_type;
      case IDX(3,4): return mat3x4_type;
      case IDX(4,2): return mat4x2_type;
      case IDX(4,3): return mat4x3_type;
      case IDX(4,4): return mat4_type;
      default: return glsl_error_type;
      }
   }

   assert(!"Should not get here.");
   return glsl_error_type;
}