summaryrefslogtreecommitdiff
path: root/src/gallium/auxiliary/gallivm/lp_bld_flow.c
blob: 5bc9c741a884a6134ac0bdde674fd08dfb213cf2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/**************************************************************************
 *
 * Copyright 2009 VMware, Inc.
 * All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 **************************************************************************/

/**
 * LLVM control flow build helpers.
 *
 * @author Jose Fonseca <jfonseca@vmware.com>
 */

#include "util/u_debug.h"
#include "util/u_memory.h"

#include "lp_bld_type.h"
#include "lp_bld_flow.h"


#define LP_BUILD_FLOW_MAX_VARIABLES 64
#define LP_BUILD_FLOW_MAX_DEPTH 32

/**
 * Enumeration of all possible flow constructs.
 */
enum lp_build_flow_construct_kind {
   LP_BUILD_FLOW_SCOPE,
   LP_BUILD_FLOW_SKIP,
   LP_BUILD_FLOW_IF
};


/**
 * Variable declaration scope.
 */
struct lp_build_flow_scope
{
   /** Number of variables declared in this scope */
   unsigned num_variables;
};


/**
 * Early exit. Useful to skip to the end of a function or block when
 * the execution mask becomes zero or when there is an error condition.
 */
struct lp_build_flow_skip
{
   /** Block to skip to */
   LLVMBasicBlockRef block;

   /** Number of variables declared at the beginning */
   unsigned num_variables;

   LLVMValueRef *phi;  /**< array [num_variables] */
};


/**
 * if/else/endif.
 */
struct lp_build_flow_if
{
   unsigned num_variables;

   LLVMValueRef *phi;  /**< array [num_variables] */

   LLVMValueRef condition;
   LLVMBasicBlockRef entry_block, true_block, false_block, merge_block;
};


/**
 * Union of all possible flow constructs' data
 */
union lp_build_flow_construct_data
{
   struct lp_build_flow_scope scope;
   struct lp_build_flow_skip skip;
   struct lp_build_flow_if ifthen;
};


/**
 * Element of the flow construct stack.
 */
struct lp_build_flow_construct
{
   enum lp_build_flow_construct_kind kind;
   union lp_build_flow_construct_data data;
};


/**
 * All necessary data to generate LLVM control flow constructs.
 *
 * Besides keeping track of the control flow construct themselves we also
 * need to keep track of variables in order to generate SSA Phi values.
 */
struct lp_build_flow_context
{
   LLVMBuilderRef builder;

   /**
    * Control flow stack.
    */
   struct lp_build_flow_construct constructs[LP_BUILD_FLOW_MAX_DEPTH];
   unsigned num_constructs;

   /**
    * Variable stack
    */
   LLVMValueRef *variables[LP_BUILD_FLOW_MAX_VARIABLES];
   unsigned num_variables;
};


struct lp_build_flow_context *
lp_build_flow_create(LLVMBuilderRef builder)
{
   struct lp_build_flow_context *flow;

   flow = CALLOC_STRUCT(lp_build_flow_context);
   if(!flow)
      return NULL;

   flow->builder = builder;

   return flow;
}


void
lp_build_flow_destroy(struct lp_build_flow_context *flow)
{
   assert(flow->num_constructs == 0);
   assert(flow->num_variables == 0);
   FREE(flow);
}


/**
 * Begin/push a new flow control construct, such as a loop, skip block
 * or variable scope.
 */
static union lp_build_flow_construct_data *
lp_build_flow_push(struct lp_build_flow_context *flow,
                   enum lp_build_flow_construct_kind kind)
{
   assert(flow->num_constructs < LP_BUILD_FLOW_MAX_DEPTH);
   if(flow->num_constructs >= LP_BUILD_FLOW_MAX_DEPTH)
      return NULL;

   flow->constructs[flow->num_constructs].kind = kind;
   return &flow->constructs[flow->num_constructs++].data;
}


/**
 * Return the current/top flow control construct on the stack.
 * \param kind  the expected type of the top-most construct
 */
static union lp_build_flow_construct_data *
lp_build_flow_peek(struct lp_build_flow_context *flow,
                   enum lp_build_flow_construct_kind kind)
{
   assert(flow->num_constructs);
   if(!flow->num_constructs)
      return NULL;

   assert(flow->constructs[flow->num_constructs - 1].kind == kind);
   if(flow->constructs[flow->num_constructs - 1].kind != kind)
      return NULL;

   return &flow->constructs[flow->num_constructs - 1].data;
}


/**
 * End/pop the current/top flow control construct on the stack.
 * \param kind  the expected type of the top-most construct
 */
static union lp_build_flow_construct_data *
lp_build_flow_pop(struct lp_build_flow_context *flow,
                  enum lp_build_flow_construct_kind kind)
{
   assert(flow->num_constructs);
   if(!flow->num_constructs)
      return NULL;

   assert(flow->constructs[flow->num_constructs - 1].kind == kind);
   if(flow->constructs[flow->num_constructs - 1].kind != kind)
      return NULL;

   return &flow->constructs[--flow->num_constructs].data;
}


/**
 * Begin a variable scope.
 *
 *
 */
void
lp_build_flow_scope_begin(struct lp_build_flow_context *flow)
{
   struct lp_build_flow_scope *scope;

   scope = &lp_build_flow_push(flow, LP_BUILD_FLOW_SCOPE)->scope;
   if(!scope)
      return;

   scope->num_variables = 0;
}


/**
 * Declare a variable.
 *
 * A variable is a named entity which can have different LLVMValueRef's at
 * different points of the program. This is relevant for control flow because
 * when there are multiple branches to a same location we need to replace
 * the variable's value with a Phi function as explained in
 * http://en.wikipedia.org/wiki/Static_single_assignment_form .
 *
 * We keep track of variables by keeping around a pointer to where they're
 * current.
 *
 * There are a few cautions to observe:
 *
 * - Variable's value must not be NULL. If there is no initial value then
 *   LLVMGetUndef() should be used.
 *
 * - Variable's value must be kept up-to-date. If the variable is going to be
 *   modified by a function then a pointer should be passed so that its value
 *   is accurate. Failure to do this will cause some of the variables'
 *   transient values to be lost, leading to wrong results.
 *
 * - A program should be written from top to bottom, by always appending
 *   instructions to the bottom with a single LLVMBuilderRef. Inserting and/or
 *   modifying existing statements will most likely lead to wrong results.
 *
 */
void
lp_build_flow_scope_declare(struct lp_build_flow_context *flow,
                            LLVMValueRef *variable)
{
   struct lp_build_flow_scope *scope;

   scope = &lp_build_flow_peek(flow, LP_BUILD_FLOW_SCOPE)->scope;
   if(!scope)
      return;

   assert(*variable);
   if(!*variable)
      return;

   assert(flow->num_variables < LP_BUILD_FLOW_MAX_VARIABLES);
   if(flow->num_variables >= LP_BUILD_FLOW_MAX_VARIABLES)
      return;

   flow->variables[flow->num_variables++] = variable;
   ++scope->num_variables;
}


void
lp_build_flow_scope_end(struct lp_build_flow_context *flow)
{
   struct lp_build_flow_scope *scope;

   scope = &lp_build_flow_pop(flow, LP_BUILD_FLOW_SCOPE)->scope;
   if(!scope)
      return;

   assert(flow->num_variables >= scope->num_variables);
   if(flow->num_variables < scope->num_variables) {
      flow->num_variables = 0;
      return;
   }

   flow->num_variables -= scope->num_variables;
}


/**
 * Note: this function has no dependencies on the flow code and could
 * be used elsewhere.
 */
LLVMBasicBlockRef
lp_build_insert_new_block(LLVMBuilderRef builder, const char *name)
{
   LLVMBasicBlockRef current_block;
   LLVMBasicBlockRef next_block;
   LLVMBasicBlockRef new_block;

   /* get current basic block */
   current_block = LLVMGetInsertBlock(builder);

   /* check if there's another block after this one */
   next_block = LLVMGetNextBasicBlock(current_block);
   if (next_block) {
      /* insert the new block before the next block */
      new_block = LLVMInsertBasicBlock(next_block, name);
   }
   else {
      /* append new block after current block */
      LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
      new_block = LLVMAppendBasicBlock(function, name);
   }

   return new_block;
}


static LLVMBasicBlockRef
lp_build_flow_insert_block(struct lp_build_flow_context *flow)
{
   return lp_build_insert_new_block(flow->builder, "");
}


/**
 * Begin a "skip" block.  Inside this block we can test a condition and
 * skip to the end of the block if the condition is false.
 */
void
lp_build_flow_skip_begin(struct lp_build_flow_context *flow)
{
   struct lp_build_flow_skip *skip;
   LLVMBuilderRef builder;
   unsigned i;

   skip = &lp_build_flow_push(flow, LP_BUILD_FLOW_SKIP)->skip;
   if(!skip)
      return;

   /* create new basic block */
   skip->block = lp_build_flow_insert_block(flow);

   skip->num_variables = flow->num_variables;
   if(!skip->num_variables) {
      skip->phi = NULL;
      return;
   }

   /* Allocate a Phi node for each variable in this skip scope */
   skip->phi = MALLOC(skip->num_variables * sizeof *skip->phi);
   if(!skip->phi) {
      skip->num_variables = 0;
      return;
   }

   builder = LLVMCreateBuilder();
   LLVMPositionBuilderAtEnd(builder, skip->block);

   /* create a Phi node for each variable */
   for(i = 0; i < skip->num_variables; ++i)
      skip->phi[i] = LLVMBuildPhi(builder, LLVMTypeOf(*flow->variables[i]), "");

   LLVMDisposeBuilder(builder);
}


/**
 * Insert code to test a condition and branch to the end of the current
 * skip block if the condition is true.
 */
void
lp_build_flow_skip_cond_break(struct lp_build_flow_context *flow,
                              LLVMValueRef cond)
{
   struct lp_build_flow_skip *skip;
   LLVMBasicBlockRef current_block;
   LLVMBasicBlockRef new_block;
   unsigned i;

   skip = &lp_build_flow_peek(flow, LP_BUILD_FLOW_SKIP)->skip;
   if(!skip)
      return;

   current_block = LLVMGetInsertBlock(flow->builder);

   new_block = lp_build_flow_insert_block(flow);

   /* for each variable, update the Phi node with a (variable, block) pair */
   for(i = 0; i < skip->num_variables; ++i) {
      assert(*flow->variables[i]);
      assert(LLVMTypeOf(skip->phi[i]) == LLVMTypeOf(*flow->variables[i]));
      LLVMAddIncoming(skip->phi[i], flow->variables[i], &current_block, 1);
   }

   /* if cond is true, goto skip->block, else goto new_block */
   LLVMBuildCondBr(flow->builder, cond, skip->block, new_block);

   LLVMPositionBuilderAtEnd(flow->builder, new_block);
}


void
lp_build_flow_skip_end(struct lp_build_flow_context *flow)
{
   struct lp_build_flow_skip *skip;
   LLVMBasicBlockRef current_block;
   unsigned i;

   skip = &lp_build_flow_pop(flow, LP_BUILD_FLOW_SKIP)->skip;
   if(!skip)
      return;

   current_block = LLVMGetInsertBlock(flow->builder);

   /* add (variable, block) tuples to the phi nodes */
   for(i = 0; i < skip->num_variables; ++i) {
      assert(*flow->variables[i]);
      assert(LLVMTypeOf(skip->phi[i]) == LLVMTypeOf(*flow->variables[i]));
      LLVMAddIncoming(skip->phi[i], flow->variables[i], &current_block, 1);
      *flow->variables[i] = skip->phi[i];
   }

   /* goto block */
   LLVMBuildBr(flow->builder, skip->block);
   LLVMPositionBuilderAtEnd(flow->builder, skip->block);

   FREE(skip->phi);
}


/**
 * Check if the mask predicate is zero.  If so, jump to the end of the block.
 */
static void
lp_build_mask_check(struct lp_build_mask_context *mask)
{
   LLVMBuilderRef builder = mask->flow->builder;
   LLVMValueRef cond;

   /* cond = (mask == 0) */
   cond = LLVMBuildICmp(builder,
                        LLVMIntEQ,
                        LLVMBuildBitCast(builder, mask->value, mask->reg_type, ""),
                        LLVMConstNull(mask->reg_type),
                        "");

   /* if cond, goto end of block */
   lp_build_flow_skip_cond_break(mask->flow, cond);
}


/**
 * Begin a section of code which is predicated on a mask.
 * \param mask  the mask context, initialized here
 * \param flow  the flow context
 * \param type  the type of the mask
 * \param value  storage for the mask
 */
void
lp_build_mask_begin(struct lp_build_mask_context *mask,
                    struct lp_build_flow_context *flow,
                    struct lp_type type,
                    LLVMValueRef value)
{
   memset(mask, 0, sizeof *mask);

   mask->flow = flow;
   mask->reg_type = LLVMIntType(type.width * type.length);
   mask->value = value;

   lp_build_flow_scope_begin(flow);
   lp_build_flow_scope_declare(flow, &mask->value);
   lp_build_flow_skip_begin(flow);

   lp_build_mask_check(mask);
}


/**
 * Update boolean mask with given value (bitwise AND).
 * Typically used to update the quad's pixel alive/killed mask
 * after depth testing, alpha testing, TGSI_OPCODE_KIL, etc.
 */
void
lp_build_mask_update(struct lp_build_mask_context *mask,
                     LLVMValueRef value)
{
   mask->value = LLVMBuildAnd( mask->flow->builder, mask->value, value, "");

   lp_build_mask_check(mask);
}


/**
 * End section of code which is predicated on a mask.
 */
LLVMValueRef
lp_build_mask_end(struct lp_build_mask_context *mask)
{
   lp_build_flow_skip_end(mask->flow);
   lp_build_flow_scope_end(mask->flow);
   return mask->value;
}



void
lp_build_loop_begin(LLVMBuilderRef builder,
                    LLVMValueRef start,
                    struct lp_build_loop_state *state)
{
   LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
   LLVMValueRef function = LLVMGetBasicBlockParent(block);

   state->block = LLVMAppendBasicBlock(function, "loop");

   LLVMBuildBr(builder, state->block);

   LLVMPositionBuilderAtEnd(builder, state->block);

   state->counter = LLVMBuildPhi(builder, LLVMTypeOf(start), "");

   LLVMAddIncoming(state->counter, &start, &block, 1);

}


void
lp_build_loop_end(LLVMBuilderRef builder,
                  LLVMValueRef end,
                  LLVMValueRef step,
                  struct lp_build_loop_state *state)
{
   LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
   LLVMValueRef function = LLVMGetBasicBlockParent(block);
   LLVMValueRef next;
   LLVMValueRef cond;
   LLVMBasicBlockRef after_block;

   if (!step)
      step = LLVMConstInt(LLVMTypeOf(end), 1, 0);

   next = LLVMBuildAdd(builder, state->counter, step, "");

   cond = LLVMBuildICmp(builder, LLVMIntNE, next, end, "");

   after_block = LLVMAppendBasicBlock(function, "");

   LLVMBuildCondBr(builder, cond, after_block, state->block);

   LLVMAddIncoming(state->counter, &next, &block, 1);

   LLVMPositionBuilderAtEnd(builder, after_block);
}

void
lp_build_loop_end_cond(LLVMBuilderRef builder,
                       LLVMValueRef end,
                       LLVMValueRef step,
                       int llvm_cond,
                       struct lp_build_loop_state *state)
{
   LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
   LLVMValueRef function = LLVMGetBasicBlockParent(block);
   LLVMValueRef next;
   LLVMValueRef cond;
   LLVMBasicBlockRef after_block;

   if (!step)
      step = LLVMConstInt(LLVMTypeOf(end), 1, 0);

   next = LLVMBuildAdd(builder, state->counter, step, "");

   cond = LLVMBuildICmp(builder, llvm_cond, next, end, "");

   after_block = LLVMAppendBasicBlock(function, "");

   LLVMBuildCondBr(builder, cond, after_block, state->block);

   LLVMAddIncoming(state->counter, &next, &block, 1);

   LLVMPositionBuilderAtEnd(builder, after_block);
}



/*
  Example of if/then/else building:

     int x;
     if (cond) {
        x = 1 + 2;
     }
     else {
        x = 2 + 3;
     }

  Is built with:

     LLVMValueRef x = LLVMGetUndef();  // or something else

     flow = lp_build_flow_create(builder);

        lp_build_flow_scope_begin(flow);

           // x needs a phi node
           lp_build_flow_scope_declare(flow, &x);

           lp_build_if(ctx, flow, builder, cond);
              x = LLVMAdd(1, 2);
           lp_build_else(ctx);
              x = LLVMAdd(2, 3);
           lp_build_endif(ctx);

        lp_build_flow_scope_end(flow);

     lp_build_flow_destroy(flow);
 */



/**
 * Begin an if/else/endif construct.
 */
void
lp_build_if(struct lp_build_if_state *ctx,
            struct lp_build_flow_context *flow,
            LLVMBuilderRef builder,
            LLVMValueRef condition)
{
   LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
   struct lp_build_flow_if *ifthen;
   unsigned i;

   memset(ctx, 0, sizeof(*ctx));
   ctx->builder = builder;
   ctx->flow = flow;

   /* push/create new scope */
   ifthen = &lp_build_flow_push(flow, LP_BUILD_FLOW_IF)->ifthen;
   assert(ifthen);

   ifthen->num_variables = flow->num_variables;
   ifthen->condition = condition;
   ifthen->entry_block = block;

   /* create a Phi node for each variable in this flow scope */
   ifthen->phi = MALLOC(ifthen->num_variables * sizeof(*ifthen->phi));
   if (!ifthen->phi) {
      ifthen->num_variables = 0;
      return;
   }

   /* create endif/merge basic block for the phi functions */
   ifthen->merge_block = lp_build_insert_new_block(builder, "endif-block");
   LLVMPositionBuilderAtEnd(builder, ifthen->merge_block);

   /* create a phi node for each variable */
   for (i = 0; i < flow->num_variables; i++) {
      ifthen->phi[i] = LLVMBuildPhi(builder, LLVMTypeOf(*flow->variables[i]), "");

      /* add add the initial value of the var from the entry block */
      if (!LLVMIsUndef(*flow->variables[i]))
         LLVMAddIncoming(ifthen->phi[i], flow->variables[i],
                         &ifthen->entry_block, 1);
   }

   /* create/insert true_block before merge_block */
   ifthen->true_block = LLVMInsertBasicBlock(ifthen->merge_block, "if-true-block");

   /* successive code goes into the true block */
   LLVMPositionBuilderAtEnd(builder, ifthen->true_block);
}


/**
 * Begin else-part of a conditional
 */
void
lp_build_else(struct lp_build_if_state *ctx)
{
   struct lp_build_flow_context *flow = ctx->flow;
   struct lp_build_flow_if *ifthen;
   unsigned i;

   ifthen = &lp_build_flow_peek(flow, LP_BUILD_FLOW_IF)->ifthen;
   assert(ifthen);

   /* for each variable, update the Phi node with a (variable, block) pair */
   LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
   for (i = 0; i < flow->num_variables; i++) {
      assert(*flow->variables[i]);
      LLVMAddIncoming(ifthen->phi[i], flow->variables[i], &ifthen->true_block, 1);
   }

   /* create/insert false_block before the merge block */
   ifthen->false_block = LLVMInsertBasicBlock(ifthen->merge_block, "if-false-block");

   /* successive code goes into the else block */
   LLVMPositionBuilderAtEnd(ctx->builder, ifthen->false_block);
}


/**
 * End a conditional.
 */
void
lp_build_endif(struct lp_build_if_state *ctx)
{
   struct lp_build_flow_context *flow = ctx->flow;
   struct lp_build_flow_if *ifthen;
   LLVMBasicBlockRef curBlock = LLVMGetInsertBlock(ctx->builder);
   unsigned i;

   ifthen = &lp_build_flow_pop(flow, LP_BUILD_FLOW_IF)->ifthen;
   assert(ifthen);

   /* Insert branch to the merge block from current block */
   LLVMBuildBr(ctx->builder, ifthen->merge_block);

   if (ifthen->false_block) {
      LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
      /* for each variable, update the Phi node with a (variable, block) pair */
      for (i = 0; i < flow->num_variables; i++) {
         assert(*flow->variables[i]);
         LLVMAddIncoming(ifthen->phi[i], flow->variables[i], &curBlock, 1);
         /* replace the variable ref with the phi function */
         *flow->variables[i] = ifthen->phi[i];
      }
   }
   else {
      /* no else clause */
      LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
      for (i = 0; i < flow->num_variables; i++) {
         assert(*flow->variables[i]);
         LLVMAddIncoming(ifthen->phi[i], flow->variables[i], &ifthen->true_block, 1);

         /* replace the variable ref with the phi function */
         *flow->variables[i] = ifthen->phi[i];
      }
   }

   FREE(ifthen->phi);

   /***
    *** Now patch in the various branch instructions.
    ***/

   /* Insert the conditional branch instruction at the end of entry_block */
   LLVMPositionBuilderAtEnd(ctx->builder, ifthen->entry_block);
   if (ifthen->false_block) {
      /* we have an else clause */
      LLVMBuildCondBr(ctx->builder, ifthen->condition,
                      ifthen->true_block, ifthen->false_block);
   }
   else {
      /* no else clause */
      LLVMBuildCondBr(ctx->builder, ifthen->condition,
                      ifthen->true_block, ifthen->merge_block);
   }

   /* Insert branch from end of true_block to merge_block */
   if (ifthen->false_block) {
      /* Append an unconditional Br(anch) instruction on the true_block */
      LLVMPositionBuilderAtEnd(ctx->builder, ifthen->true_block);
      LLVMBuildBr(ctx->builder, ifthen->merge_block);
   }
   else {
      /* No else clause.
       * Note that we've already inserted the branch at the end of
       * true_block.  See the very first LLVMBuildBr() call in this function.
       */
   }

   /* Resume building code at end of the ifthen->merge_block */
   LLVMPositionBuilderAtEnd(ctx->builder, ifthen->merge_block);
}


/**
 * Allocate a scalar (or vector) variable.
 *
 * Although not strictly part of control flow, control flow has deep impact in
 * how variables should be allocated.
 *
 * The mem2reg optimization pass is the recommended way to dealing with mutable
 * variables, and SSA. It looks for allocas and if it can handle them, it
 * promotes them, but only looks for alloca instructions in the entry block of
 * the function. Being in the entry block guarantees that the alloca is only
 * executed once, which makes analysis simpler.
 *
 * See also:
 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
 */
LLVMValueRef
lp_build_alloca(LLVMBuilderRef builder,
                LLVMTypeRef type,
                const char *name)
{
   LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
   LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
   LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
   LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
   LLVMBuilderRef first_builder = LLVMCreateBuilder();
   LLVMValueRef res;

   if (first_instr) {
      LLVMPositionBuilderBefore(first_builder, first_instr);
   } else {
      LLVMPositionBuilderAtEnd(first_builder, first_block);
   }

   res = LLVMBuildAlloca(first_builder, type, name);

   LLVMDisposeBuilder(first_builder);

   return res;
}


/**
 * Allocate an array of scalars/vectors.
 *
 * mem2reg pass is not capable of promoting structs or arrays to registers, but
 * we still put it in the first block anyway as failure to put allocas in the
 * first block may prevent the X86 backend from successfully align the stack as
 * required.
 *
 * Also the scalarrepl pass is supposedly more powerful and can promote
 * arrays in many cases.
 *
 * See also:
 * - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
 */
LLVMValueRef
lp_build_array_alloca(LLVMBuilderRef builder,
                      LLVMTypeRef type,
                      LLVMValueRef count,
                      const char *name)
{
   LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
   LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
   LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
   LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
   LLVMBuilderRef first_builder = LLVMCreateBuilder();
   LLVMValueRef res;

   if (first_instr) {
      LLVMPositionBuilderBefore(first_builder, first_instr);
   } else {
      LLVMPositionBuilderAtEnd(first_builder, first_block);
   }

   res = LLVMBuildArrayAlloca(first_builder, type, count, name);

   LLVMDisposeBuilder(first_builder);

   return res;
}