1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* LLVM control flow build helpers.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "util/u_memory.h"
#include "lp_bld_type.h"
#include "lp_bld_flow.h"
/**
* Insert a new block, right where builder is pointing to.
*
* This is useful important not only for aesthetic reasons, but also for
* performance reasons, as frequently run blocks should be laid out next to
* each other and fall-throughs maximized.
*
* See also llvm/lib/Transforms/Scalar/BasicBlockPlacement.cpp.
*
* Note: this function has no dependencies on the flow code and could
* be used elsewhere.
*/
LLVMBasicBlockRef
lp_build_insert_new_block(LLVMBuilderRef builder, const char *name)
{
LLVMBasicBlockRef current_block;
LLVMBasicBlockRef next_block;
LLVMBasicBlockRef new_block;
/* get current basic block */
current_block = LLVMGetInsertBlock(builder);
/* check if there's another block after this one */
next_block = LLVMGetNextBasicBlock(current_block);
if (next_block) {
/* insert the new block before the next block */
new_block = LLVMInsertBasicBlock(next_block, name);
}
else {
/* append new block after current block */
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
new_block = LLVMAppendBasicBlock(function, name);
}
return new_block;
}
/**
* Begin a "skip" block. Inside this block we can test a condition and
* skip to the end of the block if the condition is false.
*/
void
lp_build_flow_skip_begin(struct lp_build_skip_context *skip,
LLVMBuilderRef builder)
{
skip->builder = builder;
/* create new basic block */
skip->block = lp_build_insert_new_block(skip->builder, "skip");
}
/**
* Insert code to test a condition and branch to the end of the current
* skip block if the condition is true.
*/
void
lp_build_flow_skip_cond_break(struct lp_build_skip_context *skip,
LLVMValueRef cond)
{
LLVMBasicBlockRef new_block;
new_block = lp_build_insert_new_block(skip->builder, "");
/* if cond is true, goto skip->block, else goto new_block */
LLVMBuildCondBr(skip->builder, cond, skip->block, new_block);
LLVMPositionBuilderAtEnd(skip->builder, new_block);
}
void
lp_build_flow_skip_end(struct lp_build_skip_context *skip)
{
/* goto block */
LLVMBuildBr(skip->builder, skip->block);
LLVMPositionBuilderAtEnd(skip->builder, skip->block);
}
/**
* Check if the mask predicate is zero. If so, jump to the end of the block.
*/
void
lp_build_mask_check(struct lp_build_mask_context *mask)
{
LLVMBuilderRef builder = mask->skip.builder;
LLVMValueRef value;
LLVMValueRef cond;
value = lp_build_mask_value(mask);
/* cond = (mask == 0) */
cond = LLVMBuildICmp(builder,
LLVMIntEQ,
LLVMBuildBitCast(builder, value, mask->reg_type, ""),
LLVMConstNull(mask->reg_type),
"");
/* if cond, goto end of block */
lp_build_flow_skip_cond_break(&mask->skip, cond);
}
/**
* Begin a section of code which is predicated on a mask.
* \param mask the mask context, initialized here
* \param flow the flow context
* \param type the type of the mask
* \param value storage for the mask
*/
void
lp_build_mask_begin(struct lp_build_mask_context *mask,
LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef value)
{
memset(mask, 0, sizeof *mask);
mask->reg_type = LLVMIntType(type.width * type.length);
mask->var = lp_build_alloca(builder,
lp_build_int_vec_type(type),
"execution_mask");
LLVMBuildStore(builder, value, mask->var);
lp_build_flow_skip_begin(&mask->skip, builder);
}
LLVMValueRef
lp_build_mask_value(struct lp_build_mask_context *mask)
{
return LLVMBuildLoad(mask->skip.builder, mask->var, "");
}
/**
* Update boolean mask with given value (bitwise AND).
* Typically used to update the quad's pixel alive/killed mask
* after depth testing, alpha testing, TGSI_OPCODE_KIL, etc.
*/
void
lp_build_mask_update(struct lp_build_mask_context *mask,
LLVMValueRef value)
{
value = LLVMBuildAnd(mask->skip.builder,
lp_build_mask_value(mask),
value, "");
LLVMBuildStore(mask->skip.builder, value, mask->var);
}
/**
* End section of code which is predicated on a mask.
*/
LLVMValueRef
lp_build_mask_end(struct lp_build_mask_context *mask)
{
lp_build_flow_skip_end(&mask->skip);
return lp_build_mask_value(mask);
}
void
lp_build_loop_begin(LLVMBuilderRef builder,
LLVMValueRef start,
struct lp_build_loop_state *state)
{
state->block = lp_build_insert_new_block(builder, "loop_begin");
state->counter_var = lp_build_alloca(builder, LLVMTypeOf(start), "loop_counter");
LLVMBuildStore(builder, start, state->counter_var);
LLVMBuildBr(builder, state->block);
LLVMPositionBuilderAtEnd(builder, state->block);
state->counter = LLVMBuildLoad(builder, state->counter_var, "");
}
void
lp_build_loop_end_cond(LLVMBuilderRef builder,
LLVMValueRef end,
LLVMValueRef step,
LLVMIntPredicate llvm_cond,
struct lp_build_loop_state *state)
{
LLVMValueRef next;
LLVMValueRef cond;
LLVMBasicBlockRef after_block;
if (!step)
step = LLVMConstInt(LLVMTypeOf(end), 1, 0);
next = LLVMBuildAdd(builder, state->counter, step, "");
LLVMBuildStore(builder, next, state->counter_var);
cond = LLVMBuildICmp(builder, llvm_cond, next, end, "");
after_block = lp_build_insert_new_block(builder, "loop_end");
LLVMBuildCondBr(builder, cond, after_block, state->block);
LLVMPositionBuilderAtEnd(builder, after_block);
state->counter = LLVMBuildLoad(builder, state->counter_var, "");
}
void
lp_build_loop_end(LLVMBuilderRef builder,
LLVMValueRef end,
LLVMValueRef step,
struct lp_build_loop_state *state)
{
lp_build_loop_end_cond(builder, end, step, LLVMIntNE, state);
}
/*
Example of if/then/else building:
int x;
if (cond) {
x = 1 + 2;
}
else {
x = 2 + 3;
}
Is built with:
// x needs an alloca variable
x = lp_build_alloca(builder, type, "x");
lp_build_if(ctx, builder, cond);
LLVMBuildStore(LLVMBuildAdd(1, 2), x);
lp_build_else(ctx);
LLVMBuildStore(LLVMBuildAdd(2, 3). x);
lp_build_endif(ctx);
*/
/**
* Begin an if/else/endif construct.
*/
void
lp_build_if(struct lp_build_if_state *ifthen,
LLVMBuilderRef builder,
LLVMValueRef condition)
{
LLVMBasicBlockRef block = LLVMGetInsertBlock(builder);
memset(ifthen, 0, sizeof *ifthen);
ifthen->builder = builder;
ifthen->condition = condition;
ifthen->entry_block = block;
/* create endif/merge basic block for the phi functions */
ifthen->merge_block = lp_build_insert_new_block(builder, "endif-block");
/* create/insert true_block before merge_block */
ifthen->true_block = LLVMInsertBasicBlock(ifthen->merge_block, "if-true-block");
/* successive code goes into the true block */
LLVMPositionBuilderAtEnd(builder, ifthen->true_block);
}
/**
* Begin else-part of a conditional
*/
void
lp_build_else(struct lp_build_if_state *ifthen)
{
/* Append an unconditional Br(anch) instruction on the true_block */
LLVMBuildBr(ifthen->builder, ifthen->merge_block);
/* create/insert false_block before the merge block */
ifthen->false_block = LLVMInsertBasicBlock(ifthen->merge_block, "if-false-block");
/* successive code goes into the else block */
LLVMPositionBuilderAtEnd(ifthen->builder, ifthen->false_block);
}
/**
* End a conditional.
*/
void
lp_build_endif(struct lp_build_if_state *ifthen)
{
/* Insert branch to the merge block from current block */
LLVMBuildBr(ifthen->builder, ifthen->merge_block);
/*
* Now patch in the various branch instructions.
*/
/* Insert the conditional branch instruction at the end of entry_block */
LLVMPositionBuilderAtEnd(ifthen->builder, ifthen->entry_block);
if (ifthen->false_block) {
/* we have an else clause */
LLVMBuildCondBr(ifthen->builder, ifthen->condition,
ifthen->true_block, ifthen->false_block);
}
else {
/* no else clause */
LLVMBuildCondBr(ifthen->builder, ifthen->condition,
ifthen->true_block, ifthen->merge_block);
}
/* Resume building code at end of the ifthen->merge_block */
LLVMPositionBuilderAtEnd(ifthen->builder, ifthen->merge_block);
}
/**
* Allocate a scalar (or vector) variable.
*
* Although not strictly part of control flow, control flow has deep impact in
* how variables should be allocated.
*
* The mem2reg optimization pass is the recommended way to dealing with mutable
* variables, and SSA. It looks for allocas and if it can handle them, it
* promotes them, but only looks for alloca instructions in the entry block of
* the function. Being in the entry block guarantees that the alloca is only
* executed once, which makes analysis simpler.
*
* See also:
* - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
*/
LLVMValueRef
lp_build_alloca(LLVMBuilderRef builder,
LLVMTypeRef type,
const char *name)
{
LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
LLVMBuilderRef first_builder = LLVMCreateBuilder();
LLVMValueRef res;
if (first_instr) {
LLVMPositionBuilderBefore(first_builder, first_instr);
} else {
LLVMPositionBuilderAtEnd(first_builder, first_block);
}
res = LLVMBuildAlloca(first_builder, type, name);
LLVMBuildStore(builder, LLVMConstNull(type), res);
LLVMDisposeBuilder(first_builder);
return res;
}
/**
* Allocate an array of scalars/vectors.
*
* mem2reg pass is not capable of promoting structs or arrays to registers, but
* we still put it in the first block anyway as failure to put allocas in the
* first block may prevent the X86 backend from successfully align the stack as
* required.
*
* Also the scalarrepl pass is supposedly more powerful and can promote
* arrays in many cases.
*
* See also:
* - http://www.llvm.org/docs/tutorial/OCamlLangImpl7.html#memory
*/
LLVMValueRef
lp_build_array_alloca(LLVMBuilderRef builder,
LLVMTypeRef type,
LLVMValueRef count,
const char *name)
{
LLVMBasicBlockRef current_block = LLVMGetInsertBlock(builder);
LLVMValueRef function = LLVMGetBasicBlockParent(current_block);
LLVMBasicBlockRef first_block = LLVMGetEntryBasicBlock(function);
LLVMValueRef first_instr = LLVMGetFirstInstruction(first_block);
LLVMBuilderRef first_builder = LLVMCreateBuilder();
LLVMValueRef res;
if (first_instr) {
LLVMPositionBuilderBefore(first_builder, first_instr);
} else {
LLVMPositionBuilderAtEnd(first_builder, first_block);
}
res = LLVMBuildArrayAlloca(first_builder, type, count, name);
LLVMDisposeBuilder(first_builder);
return res;
}
|