1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/**************************************************************************
*
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/**
* @file
* Helper functions for packing/unpacking.
*
* Pack/unpacking is necessary for conversion between types of different
* bit width.
*
* They are also commonly used when an computation needs higher
* precision for the intermediate values. For example, if one needs the
* function:
*
* c = compute(a, b);
*
* to use more precision for intermediate results then one should implement it
* as:
*
* LLVMValueRef
* compute(LLVMBuilderRef builder struct lp_type type, LLVMValueRef a, LLVMValueRef b)
* {
* struct lp_type wide_type = lp_wider_type(type);
* LLVMValueRef al, ah, bl, bh, cl, ch, c;
*
* lp_build_unpack2(builder, type, wide_type, a, &al, &ah);
* lp_build_unpack2(builder, type, wide_type, b, &bl, &bh);
*
* cl = compute_half(al, bl);
* ch = compute_half(ah, bh);
*
* c = lp_build_pack2(bld->builder, wide_type, type, cl, ch);
*
* return c;
* }
*
* where compute_half() would do the computation for half the elements with
* twice the precision.
*
* @author Jose Fonseca <jfonseca@vmware.com>
*/
#include "util/u_debug.h"
#include "util/u_math.h"
#include "util/u_cpu_detect.h"
#include "lp_bld_type.h"
#include "lp_bld_const.h"
#include "lp_bld_intr.h"
#include "lp_bld_arit.h"
#include "lp_bld_pack.h"
/**
* Build shuffle vectors that match PUNPCKLxx and PUNPCKHxx instructions.
*/
static LLVMValueRef
lp_build_const_unpack_shuffle(unsigned n, unsigned lo_hi)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i, j;
assert(n <= LP_MAX_VECTOR_LENGTH);
assert(lo_hi < 2);
/* TODO: cache results in a static table */
for(i = 0, j = lo_hi*n/2; i < n; i += 2, ++j) {
elems[i + 0] = LLVMConstInt(LLVMInt32Type(), 0 + j, 0);
elems[i + 1] = LLVMConstInt(LLVMInt32Type(), n + j, 0);
}
return LLVMConstVector(elems, n);
}
/**
* Build shuffle vectors that match PACKxx instructions.
*/
static LLVMValueRef
lp_build_const_pack_shuffle(unsigned n)
{
LLVMValueRef elems[LP_MAX_VECTOR_LENGTH];
unsigned i;
assert(n <= LP_MAX_VECTOR_LENGTH);
/* TODO: cache results in a static table */
for(i = 0; i < n; ++i)
elems[i] = LLVMConstInt(LLVMInt32Type(), 2*i, 0);
return LLVMConstVector(elems, n);
}
/**
* Interleave vector elements.
*
* Matches the PUNPCKLxx and PUNPCKHxx SSE instructions.
*/
LLVMValueRef
lp_build_interleave2(LLVMBuilderRef builder,
struct lp_type type,
LLVMValueRef a,
LLVMValueRef b,
unsigned lo_hi)
{
LLVMValueRef shuffle;
shuffle = lp_build_const_unpack_shuffle(type.length, lo_hi);
return LLVMBuildShuffleVector(builder, a, b, shuffle, "");
}
/**
* Double the bit width.
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*/
void
lp_build_unpack2(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst_lo,
LLVMValueRef *dst_hi)
{
LLVMValueRef msb;
LLVMTypeRef dst_vec_type;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(dst_type.width == src_type.width * 2);
assert(dst_type.length * 2 == src_type.length);
if(dst_type.sign && src_type.sign) {
/* Replicate the sign bit in the most significant bits */
msb = LLVMBuildAShr(builder, src, lp_build_const_int_vec(src_type, src_type.width - 1), "");
}
else
/* Most significant bits always zero */
msb = lp_build_zero(src_type);
/* Interleave bits */
if(util_cpu_caps.little_endian) {
*dst_lo = lp_build_interleave2(builder, src_type, src, msb, 0);
*dst_hi = lp_build_interleave2(builder, src_type, src, msb, 1);
}
else {
*dst_lo = lp_build_interleave2(builder, src_type, msb, src, 0);
*dst_hi = lp_build_interleave2(builder, src_type, msb, src, 1);
}
/* Cast the result into the new type (twice as wide) */
dst_vec_type = lp_build_vec_type(dst_type);
*dst_lo = LLVMBuildBitCast(builder, *dst_lo, dst_vec_type, "");
*dst_hi = LLVMBuildBitCast(builder, *dst_hi, dst_vec_type, "");
}
/**
* Expand the bit width.
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*/
void
lp_build_unpack(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef src,
LLVMValueRef *dst, unsigned num_dsts)
{
unsigned num_tmps;
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length == dst_type.length * num_dsts);
num_tmps = 1;
dst[0] = src;
while(src_type.width < dst_type.width) {
struct lp_type tmp_type = src_type;
tmp_type.width *= 2;
tmp_type.length /= 2;
for(i = num_tmps; i--; ) {
lp_build_unpack2(builder, src_type, tmp_type, dst[i], &dst[2*i + 0], &dst[2*i + 1]);
}
src_type = tmp_type;
num_tmps *= 2;
}
assert(num_tmps == num_dsts);
}
/**
* Non-interleaved pack.
*
* This will move values as
*
* lo = __ l0 __ l1 __ l2 __.. __ ln
* hi = __ h0 __ h1 __ h2 __.. __ hn
* res = l0 l1 l2 .. ln h0 h1 h2 .. hn
*
* This will only change the number of bits the values are represented, not the
* values themselves.
*
* It is assumed the values are already clamped into the destination type range.
* Values outside that range will produce undefined results. Use
* lp_build_packs2 instead.
*/
LLVMValueRef
lp_build_pack2(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi)
{
#if HAVE_LLVM < 0x0207
LLVMTypeRef src_vec_type = lp_build_vec_type(src_type);
#endif
LLVMTypeRef dst_vec_type = lp_build_vec_type(dst_type);
LLVMValueRef shuffle;
LLVMValueRef res;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(src_type.width == dst_type.width * 2);
assert(src_type.length * 2 == dst_type.length);
if(util_cpu_caps.has_sse2 && src_type.width * src_type.length == 128) {
switch(src_type.width) {
case 32:
if(dst_type.sign) {
#if HAVE_LLVM >= 0x0207
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", dst_vec_type, lo, hi);
#else
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packssdw.128", src_vec_type, lo, hi);
#endif
}
else {
if (util_cpu_caps.has_sse4_1) {
return lp_build_intrinsic_binary(builder, "llvm.x86.sse41.packusdw", dst_vec_type, lo, hi);
}
else {
assert(0);
return LLVMGetUndef(dst_vec_type);
}
}
break;
case 16:
if(dst_type.sign)
#if HAVE_LLVM >= 0x0207
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", dst_vec_type, lo, hi);
#else
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packsswb.128", src_vec_type, lo, hi);
#endif
else
#if HAVE_LLVM >= 0x0207
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", dst_vec_type, lo, hi);
#else
res = lp_build_intrinsic_binary(builder, "llvm.x86.sse2.packuswb.128", src_vec_type, lo, hi);
#endif
break;
default:
assert(0);
return LLVMGetUndef(dst_vec_type);
break;
}
res = LLVMBuildBitCast(builder, res, dst_vec_type, "");
return res;
}
lo = LLVMBuildBitCast(builder, lo, dst_vec_type, "");
hi = LLVMBuildBitCast(builder, hi, dst_vec_type, "");
shuffle = lp_build_const_pack_shuffle(dst_type.length);
res = LLVMBuildShuffleVector(builder, lo, hi, shuffle, "");
return res;
}
/**
* Non-interleaved pack and saturate.
*
* Same as lp_build_pack2 but will saturate values so that they fit into the
* destination type.
*/
LLVMValueRef
lp_build_packs2(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi)
{
boolean clamp;
assert(!src_type.floating);
assert(!dst_type.floating);
assert(src_type.sign == dst_type.sign);
assert(src_type.width == dst_type.width * 2);
assert(src_type.length * 2 == dst_type.length);
clamp = TRUE;
/* All X86 SSE non-interleaved pack instructions take signed inputs and
* saturate them, so no need to clamp for those cases. */
if(util_cpu_caps.has_sse2 &&
src_type.width * src_type.length == 128 &&
src_type.sign)
clamp = FALSE;
if(clamp) {
struct lp_build_context bld;
unsigned dst_bits = dst_type.sign ? dst_type.width - 1 : dst_type.width;
LLVMValueRef dst_max = lp_build_const_int_vec(src_type, ((unsigned long long)1 << dst_bits) - 1);
lp_build_context_init(&bld, builder, src_type);
lo = lp_build_min(&bld, lo, dst_max);
hi = lp_build_min(&bld, hi, dst_max);
/* FIXME: What about lower bound? */
}
return lp_build_pack2(builder, src_type, dst_type, lo, hi);
}
/**
* Truncate the bit width.
*
* TODO: Handle saturation consistently.
*/
LLVMValueRef
lp_build_pack(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
boolean clamped,
const LLVMValueRef *src, unsigned num_srcs)
{
LLVMValueRef (*pack2)(LLVMBuilderRef builder,
struct lp_type src_type,
struct lp_type dst_type,
LLVMValueRef lo,
LLVMValueRef hi);
LLVMValueRef tmp[LP_MAX_VECTOR_LENGTH];
unsigned i;
/* Register width must remain constant */
assert(src_type.width * src_type.length == dst_type.width * dst_type.length);
/* We must not loose or gain channels. Only precision */
assert(src_type.length * num_srcs == dst_type.length);
if(clamped)
pack2 = &lp_build_pack2;
else
pack2 = &lp_build_packs2;
for(i = 0; i < num_srcs; ++i)
tmp[i] = src[i];
while(src_type.width > dst_type.width) {
struct lp_type tmp_type = src_type;
tmp_type.width /= 2;
tmp_type.length *= 2;
/* Take in consideration the sign changes only in the last step */
if(tmp_type.width == dst_type.width)
tmp_type.sign = dst_type.sign;
num_srcs /= 2;
for(i = 0; i < num_srcs; ++i)
tmp[i] = pack2(builder, src_type, tmp_type, tmp[2*i + 0], tmp[2*i + 1]);
src_type = tmp_type;
}
assert(num_srcs == 1);
return tmp[0];
}
|