1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/**************************************************************************
*
* Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "pipe/p_compiler.h"
#include "spu_main.h"
#include "spu_texture.h"
#include "spu_tile.h"
#include "spu_colorpack.h"
#include "spu_dcache.h"
/**
* Mark all tex cache entries as invalid.
*/
void
invalidate_tex_cache(void)
{
uint unit = 0;
uint bytes = 4 * spu.texture[unit].width
* spu.texture[unit].height;
spu_dcache_mark_dirty((unsigned) spu.texture[unit].start, bytes);
}
/**
* XXX look into getting texels for all four pixels in a quad at once.
*/
static uint
get_texel(uint unit, vec_uint4 coordinate)
{
/*
* XXX we could do the "/ TILE_SIZE" and "% TILE_SIZE" operations as
* SIMD since X and Y are already in a SIMD register.
*/
const unsigned texture_ea = (uintptr_t) spu.texture[unit].start;
ushort x = spu_extract(coordinate, 0);
ushort y = spu_extract(coordinate, 1);
unsigned tile_offset = sizeof(tile_t)
* ((y / TILE_SIZE * spu.texture[unit].tiles_per_row) + (x / TILE_SIZE));
ushort texel_offset = (ushort) 4
* (ushort) (((ushort) (y % TILE_SIZE) * (ushort) TILE_SIZE) + (x % TILE_SIZE));
vec_uint4 tmp;
spu_dcache_fetch_unaligned((qword *) & tmp,
texture_ea + tile_offset + texel_offset,
4);
return spu_extract(tmp, 0);
}
/**
* Get four texels from locations (x[0], y[0]), (x[1], y[1]) ...
*
* NOTE: in the typical case of bilinear filtering, the four texels
* are in a 2x2 group so we could get by with just two dcache fetches
* (two side-by-side texels per fetch). But when bilinear filtering
* wraps around a texture edge, we'll probably need code like we have
* now.
* FURTHERMORE: since we're rasterizing a quad of 2x2 pixels at a time,
* it's quite likely that the four pixels in a quad will need some of the
* same texels. So look into doing texture fetches for four pixels at
* a time.
*/
static void
get_four_texels(uint unit, vec_uint4 x, vec_uint4 y, vec_uint4 *texels)
{
const unsigned texture_ea = (uintptr_t) spu.texture[unit].start;
vec_uint4 tile_x = spu_rlmask(x, -5);
vec_uint4 tile_y = spu_rlmask(y, -5);
const qword offset_x = si_andi((qword) x, 0x1f);
const qword offset_y = si_andi((qword) y, 0x1f);
const qword tiles_per_row = (qword) spu_splats(spu.texture[unit].tiles_per_row);
const qword tile_size = (qword) spu_splats((unsigned) sizeof(tile_t));
qword tile_offset = si_mpya((qword) tile_y, tiles_per_row, (qword) tile_x);
tile_offset = si_mpy((qword) tile_offset, tile_size);
qword texel_offset = si_a(si_mpyui(offset_y, 32), offset_x);
texel_offset = si_mpyui(texel_offset, 4);
vec_uint4 offset = (vec_uint4) si_a(tile_offset, texel_offset);
spu_dcache_fetch_unaligned((qword *) & texels[0],
texture_ea + spu_extract(offset, 0), 4);
spu_dcache_fetch_unaligned((qword *) & texels[1],
texture_ea + spu_extract(offset, 1), 4);
spu_dcache_fetch_unaligned((qword *) & texels[2],
texture_ea + spu_extract(offset, 2), 4);
spu_dcache_fetch_unaligned((qword *) & texels[3],
texture_ea + spu_extract(offset, 3), 4);
}
/**
* Get texture sample at texcoord.
*/
vector float
sample_texture_nearest(uint unit, vector float texcoord)
{
vector float tc = spu_mul(texcoord, spu.texture[unit].tex_size);
vector unsigned int itc = spu_convtu(tc, 0); /* convert to int */
itc = spu_and(itc, spu.texture[unit].tex_size_mask); /* mask (GL_REPEAT) */
uint texel = get_texel(unit, itc);
return spu_unpack_A8R8G8B8(texel);
}
vector float
sample_texture_bilinear(uint unit, vector float texcoord)
{
static const vec_uint4 offset_x = {0, 0, 1, 1};
static const vec_uint4 offset_y = {0, 1, 0, 1};
vector float tc = spu_mul(texcoord, spu.texture[unit].tex_size);
tc = spu_add(tc, spu_splats(-0.5f)); /* half texel bias */
/* integer texcoords S,T: */
vec_uint4 itc = spu_convtu(tc, 0); /* convert to int */
vec_uint4 texels[4];
/* setup texcoords for quad:
* +-----+-----+
* |x0,y0|x1,y1|
* +-----+-----+
* |x2,y2|x3,y3|
* +-----+-----+
*/
vec_uint4 x = spu_splats(spu_extract(itc, 0));
vec_uint4 y = spu_splats(spu_extract(itc, 1));
x = spu_add(x, offset_x);
y = spu_add(y, offset_y);
/* GL_REPEAT wrap mode: */
x = spu_and(x, spu.texture[unit].tex_size_x_mask);
y = spu_and(y, spu.texture[unit].tex_size_y_mask);
get_four_texels(unit, x, y, texels);
/* integer A8R8G8B8 to float texel conversion */
vector float texel00 = spu_unpack_A8R8G8B8(spu_extract(texels[0], 0));
vector float texel01 = spu_unpack_A8R8G8B8(spu_extract(texels[1], 0));
vector float texel10 = spu_unpack_A8R8G8B8(spu_extract(texels[2], 0));
vector float texel11 = spu_unpack_A8R8G8B8(spu_extract(texels[3], 0));
/* Compute weighting factors in [0,1]
* Multiply texcoord by 1024, AND with 1023, convert back to float.
*/
vector float tc1024 = spu_mul(tc, spu_splats(1024.0f));
vector signed int itc1024 = spu_convts(tc1024, 0);
itc1024 = spu_and(itc1024, spu_splats((1 << 10) - 1));
vector float weight = spu_convtf(itc1024, 10);
/* smeared frac and 1-frac */
vector float sfrac = spu_splats(spu_extract(weight, 0));
vector float tfrac = spu_splats(spu_extract(weight, 1));
vector float sfrac1 = spu_sub(spu_splats(1.0f), sfrac);
vector float tfrac1 = spu_sub(spu_splats(1.0f), tfrac);
/* multiply the samples (colors) by the S/T weights */
texel00 = spu_mul(spu_mul(texel00, sfrac1), tfrac1);
texel10 = spu_mul(spu_mul(texel10, sfrac ), tfrac1);
texel01 = spu_mul(spu_mul(texel01, sfrac1), tfrac );
texel11 = spu_mul(spu_mul(texel11, sfrac ), tfrac );
/* compute sum of weighted samples */
vector float texel_sum = spu_add(texel00, texel01);
texel_sum = spu_add(texel_sum, texel10);
texel_sum = spu_add(texel_sum, texel11);
return texel_sum;
}
|