summaryrefslogtreecommitdiff
path: root/src/gallium/drivers/softpipe/sp_tex_sample.c
blob: ecd6b39863c7ac4c4f121e1176cf3cb51f1245bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
/**************************************************************************
 * 
 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
 * All Rights Reserved.
 * Copyright 2008-2010 VMware, Inc.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sub license, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 * 
 * The above copyright notice and this permission notice (including the
 * next paragraph) shall be included in all copies or substantial portions
 * of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 * 
 **************************************************************************/

/**
 * Texture sampling
 *
 * Authors:
 *   Brian Paul
 *   Keith Whitwell
 */

#include "pipe/p_context.h"
#include "pipe/p_defines.h"
#include "pipe/p_shader_tokens.h"
#include "util/u_math.h"
#include "util/u_memory.h"
#include "sp_quad.h"   /* only for #define QUAD_* tokens */
#include "sp_tex_sample.h"
#include "sp_tex_tile_cache.h"



/*
 * Return fractional part of 'f'.  Used for computing interpolation weights.
 * Need to be careful with negative values.
 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
 * of improperly weighted linear-filtered textures.
 * The tests/texwrap.c demo is a good test.
 */
static INLINE float
frac(float f)
{
   return f - util_ifloor(f);
}



/**
 * Linear interpolation macro
 */
static INLINE float
lerp(float a, float v0, float v1)
{
   return v0 + a * (v1 - v0);
}


/**
 * Do 2D/biliner interpolation of float values.
 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
 * a and b are the horizontal and vertical interpolants.
 * It's important that this function is inlined when compiled with
 * optimization!  If we find that's not true on some systems, convert
 * to a macro.
 */
static INLINE float
lerp_2d(float a, float b,
        float v00, float v10, float v01, float v11)
{
   const float temp0 = lerp(a, v00, v10);
   const float temp1 = lerp(a, v01, v11);
   return lerp(b, temp0, temp1);
}


/**
 * As above, but 3D interpolation of 8 values.
 */
static INLINE float
lerp_3d(float a, float b, float c,
        float v000, float v100, float v010, float v110,
        float v001, float v101, float v011, float v111)
{
   const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
   const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
   return lerp(c, temp0, temp1);
}



/**
 * Compute coord % size for repeat wrap modes.
 * Note that if coord is a signed integer, coord % size doesn't give
 * the right value for coord < 0 (in terms of texture repeat).  Just
 * casting to unsigned fixes that.
 */
static INLINE int
repeat(int coord, unsigned size)
{
   return (int) ((unsigned) coord % size);
}


/**
 * Apply texture coord wrapping mode and return integer texture indexes
 * for a vector of four texcoords (S or T or P).
 * \param wrapMode  PIPE_TEX_WRAP_x
 * \param s  the incoming texcoords
 * \param size  the texture image size
 * \param icoord  returns the integer texcoords
 * \return  integer texture index
 */
static void
wrap_nearest_repeat(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   /* s limited to [0,1) */
   /* i limited to [0,size-1] */
   for (ch = 0; ch < 4; ch++) {
      int i = util_ifloor(s[ch] * size);
      icoord[ch] = repeat(i, size);
   }
}


static void
wrap_nearest_clamp(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   /* s limited to [0,1] */
   /* i limited to [0,size-1] */
   for (ch = 0; ch < 4; ch++) {
      if (s[ch] <= 0.0F)
         icoord[ch] = 0;
      else if (s[ch] >= 1.0F)
         icoord[ch] = size - 1;
      else
         icoord[ch] = util_ifloor(s[ch] * size);
   }
}


static void
wrap_nearest_clamp_to_edge(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   /* s limited to [min,max] */
   /* i limited to [0, size-1] */
   const float min = 1.0F / (2.0F * size);
   const float max = 1.0F - min;
   for (ch = 0; ch < 4; ch++) {
      if (s[ch] < min)
         icoord[ch] = 0;
      else if (s[ch] > max)
         icoord[ch] = size - 1;
      else
         icoord[ch] = util_ifloor(s[ch] * size);
   }
}


static void
wrap_nearest_clamp_to_border(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   /* s limited to [min,max] */
   /* i limited to [-1, size] */
   const float min = -1.0F / (2.0F * size);
   const float max = 1.0F - min;
   for (ch = 0; ch < 4; ch++) {
      if (s[ch] <= min)
         icoord[ch] = -1;
      else if (s[ch] >= max)
         icoord[ch] = size;
      else
         icoord[ch] = util_ifloor(s[ch] * size);
   }
}


static void
wrap_nearest_mirror_repeat(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   const float min = 1.0F / (2.0F * size);
   const float max = 1.0F - min;
   for (ch = 0; ch < 4; ch++) {
      const int flr = util_ifloor(s[ch]);
      float u;
      if (flr & 1)
         u = 1.0F - (s[ch] - (float) flr);
      else
         u = s[ch] - (float) flr;
      if (u < min)
         icoord[ch] = 0;
      else if (u > max)
         icoord[ch] = size - 1;
      else
         icoord[ch] = util_ifloor(u * size);
   }
}


static void
wrap_nearest_mirror_clamp(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      /* s limited to [0,1] */
      /* i limited to [0,size-1] */
      const float u = fabsf(s[ch]);
      if (u <= 0.0F)
         icoord[ch] = 0;
      else if (u >= 1.0F)
         icoord[ch] = size - 1;
      else
         icoord[ch] = util_ifloor(u * size);
   }
}


static void
wrap_nearest_mirror_clamp_to_edge(const float s[4], unsigned size,
                                  int icoord[4])
{
   uint ch;
   /* s limited to [min,max] */
   /* i limited to [0, size-1] */
   const float min = 1.0F / (2.0F * size);
   const float max = 1.0F - min;
   for (ch = 0; ch < 4; ch++) {
      const float u = fabsf(s[ch]);
      if (u < min)
         icoord[ch] = 0;
      else if (u > max)
         icoord[ch] = size - 1;
      else
         icoord[ch] = util_ifloor(u * size);
   }
}


static void
wrap_nearest_mirror_clamp_to_border(const float s[4], unsigned size,
                                    int icoord[4])
{
   uint ch;
   /* s limited to [min,max] */
   /* i limited to [0, size-1] */
   const float min = -1.0F / (2.0F * size);
   const float max = 1.0F - min;
   for (ch = 0; ch < 4; ch++) {
      const float u = fabsf(s[ch]);
      if (u < min)
         icoord[ch] = -1;
      else if (u > max)
         icoord[ch] = size;
      else
         icoord[ch] = util_ifloor(u * size);
   }
}


/**
 * Used to compute texel locations for linear sampling for four texcoords.
 * \param wrapMode  PIPE_TEX_WRAP_x
 * \param s  the texcoords
 * \param size  the texture image size
 * \param icoord0  returns first texture indexes
 * \param icoord1  returns second texture indexes (usually icoord0 + 1)
 * \param w  returns blend factor/weight between texture indexes
 * \param icoord  returns the computed integer texture coords
 */
static void
wrap_linear_repeat(const float s[4], unsigned size,
                   int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = s[ch] * size - 0.5F;
      icoord0[ch] = repeat(util_ifloor(u), size);
      icoord1[ch] = repeat(icoord0[ch] + 1, size);
      w[ch] = frac(u);
   }
}


static void
wrap_linear_clamp(const float s[4], unsigned size,
                  int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = CLAMP(s[ch], 0.0F, 1.0F);
      u = u * size - 0.5f;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_clamp_to_edge(const float s[4], unsigned size,
                          int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = CLAMP(s[ch], 0.0F, 1.0F);
      u = u * size - 0.5f;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      if (icoord0[ch] < 0)
         icoord0[ch] = 0;
      if (icoord1[ch] >= (int) size)
         icoord1[ch] = size - 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_clamp_to_border(const float s[4], unsigned size,
                            int icoord0[4], int icoord1[4], float w[4])
{
   const float min = -1.0F / (2.0F * size);
   const float max = 1.0F - min;
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = CLAMP(s[ch], min, max);
      u = u * size - 0.5f;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_mirror_repeat(const float s[4], unsigned size,
                          int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      const int flr = util_ifloor(s[ch]);
      float u;
      if (flr & 1)
         u = 1.0F - (s[ch] - (float) flr);
      else
         u = s[ch] - (float) flr;
      u = u * size - 0.5F;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      if (icoord0[ch] < 0)
         icoord0[ch] = 0;
      if (icoord1[ch] >= (int) size)
         icoord1[ch] = size - 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_mirror_clamp(const float s[4], unsigned size,
                         int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = fabsf(s[ch]);
      if (u >= 1.0F)
         u = (float) size;
      else
         u *= size;
      u -= 0.5F;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_mirror_clamp_to_edge(const float s[4], unsigned size,
                                 int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = fabsf(s[ch]);
      if (u >= 1.0F)
         u = (float) size;
      else
         u *= size;
      u -= 0.5F;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      if (icoord0[ch] < 0)
         icoord0[ch] = 0;
      if (icoord1[ch] >= (int) size)
         icoord1[ch] = size - 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_mirror_clamp_to_border(const float s[4], unsigned size,
                                   int icoord0[4], int icoord1[4], float w[4])
{
   const float min = -1.0F / (2.0F * size);
   const float max = 1.0F - min;
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = fabsf(s[ch]);
      if (u <= min)
         u = min * size;
      else if (u >= max)
         u = max * size;
      else
         u *= size;
      u -= 0.5F;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      w[ch] = frac(u);
   }
}


/**
 * For RECT textures / unnormalized texcoords
 * Only a subset of wrap modes supported.
 */
static void
wrap_nearest_unorm_clamp(const float s[4], unsigned size, int icoord[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      int i = util_ifloor(s[ch]);
      icoord[ch]= CLAMP(i, 0, (int) size-1);
   }
}


/**
 * Handles clamp_to_edge and clamp_to_border:
 */
static void
wrap_nearest_unorm_clamp_to_border(const float s[4], unsigned size,
                                   int icoord[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      icoord[ch]= util_ifloor( CLAMP(s[ch], 0.5F, (float) size - 0.5F) );
   }
}


/**
 * For RECT textures / unnormalized texcoords.
 * Only a subset of wrap modes supported.
 */
static void
wrap_linear_unorm_clamp(const float s[4], unsigned size,
                        int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      /* Not exactly what the spec says, but it matches NVIDIA output */
      float u = CLAMP(s[ch] - 0.5F, 0.0f, (float) size - 1.0f);
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      w[ch] = frac(u);
   }
}


static void
wrap_linear_unorm_clamp_to_border(const float s[4], unsigned size,
                                  int icoord0[4], int icoord1[4], float w[4])
{
   uint ch;
   for (ch = 0; ch < 4; ch++) {
      float u = CLAMP(s[ch], 0.5F, (float) size - 0.5F);
      u -= 0.5F;
      icoord0[ch] = util_ifloor(u);
      icoord1[ch] = icoord0[ch] + 1;
      if (icoord1[ch] > (int) size - 1)
         icoord1[ch] = size - 1;
      w[ch] = frac(u);
   }
}



/**
 * Examine the quad's texture coordinates to compute the partial
 * derivatives w.r.t X and Y, then compute lambda (level of detail).
 */
static float
compute_lambda_1d(const struct sp_sampler_varient *samp,
                  const float s[QUAD_SIZE],
                  const float t[QUAD_SIZE],
                  const float p[QUAD_SIZE])
{
   const struct pipe_texture *texture = samp->texture;
   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
   float rho = MAX2(dsdx, dsdy) * texture->width0;

   return util_fast_log2(rho);
}


static float
compute_lambda_2d(const struct sp_sampler_varient *samp,
                  const float s[QUAD_SIZE],
                  const float t[QUAD_SIZE],
                  const float p[QUAD_SIZE])
{
   const struct pipe_texture *texture = samp->texture;
   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
   float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
   float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
   float maxx = MAX2(dsdx, dsdy) * texture->width0;
   float maxy = MAX2(dtdx, dtdy) * texture->height0;
   float rho  = MAX2(maxx, maxy);

   return util_fast_log2(rho);
}


static float
compute_lambda_3d(const struct sp_sampler_varient *samp,
                  const float s[QUAD_SIZE],
                  const float t[QUAD_SIZE],
                  const float p[QUAD_SIZE])
{
   const struct pipe_texture *texture = samp->texture;
   float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
   float dsdy = fabsf(s[QUAD_TOP_LEFT]     - s[QUAD_BOTTOM_LEFT]);
   float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
   float dtdy = fabsf(t[QUAD_TOP_LEFT]     - t[QUAD_BOTTOM_LEFT]);
   float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
   float dpdy = fabsf(p[QUAD_TOP_LEFT]     - p[QUAD_BOTTOM_LEFT]);
   float maxx = MAX2(dsdx, dsdy) * texture->width0;
   float maxy = MAX2(dtdx, dtdy) * texture->height0;
   float maxz = MAX2(dpdx, dpdy) * texture->depth0;
   float rho;

   rho = MAX2(maxx, maxy);
   rho = MAX2(rho, maxz);

   return util_fast_log2(rho);
}


/**
 * Compute lambda for a vertex texture sampler.
 * Since there aren't derivatives to use, just return 0.
 */
static float
compute_lambda_vert(const struct sp_sampler_varient *samp,
                    const float s[QUAD_SIZE],
                    const float t[QUAD_SIZE],
                    const float p[QUAD_SIZE])
{
   return 0.0f;
}



/**
 * Get a texel from a texture, using the texture tile cache.
 *
 * \param addr  the template tex address containing cube, z, face info.
 * \param x  the x coord of texel within 2D image
 * \param y  the y coord of texel within 2D image
 * \param rgba  the quad to put the texel/color into
 *
 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
 * sp_get_cached_tile_tex() function.  Also, get 4 texels instead of 1...
 */




static INLINE const float *
get_texel_2d_no_border(const struct sp_sampler_varient *samp,
		       union tex_tile_address addr, int x, int y)
{
   const struct softpipe_tex_cached_tile *tile;

   addr.bits.x = x / TILE_SIZE;
   addr.bits.y = y / TILE_SIZE;
   y %= TILE_SIZE;
   x %= TILE_SIZE;

   tile = sp_get_cached_tile_tex(samp->cache, addr);

   return &tile->data.color[y][x][0];
}


static INLINE const float *
get_texel_2d(const struct sp_sampler_varient *samp,
	     union tex_tile_address addr, int x, int y)
{
   const struct pipe_texture *texture = samp->texture;
   unsigned level = addr.bits.level;

   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
       y < 0 || y >= (int) u_minify(texture->height0, level)) {
      return samp->sampler->border_color;
   }
   else {
      return get_texel_2d_no_border( samp, addr, x, y );
   }
}


/* Gather a quad of adjacent texels within a tile:
 */
static INLINE void
get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_varient *samp,
					union tex_tile_address addr, 
					unsigned x, unsigned y, 
					const float *out[4])
{
   const struct softpipe_tex_cached_tile *tile;

   addr.bits.x = x / TILE_SIZE;
   addr.bits.y = y / TILE_SIZE;
   y %= TILE_SIZE;
   x %= TILE_SIZE;

   tile = sp_get_cached_tile_tex(samp->cache, addr);
      
   out[0] = &tile->data.color[y  ][x  ][0];
   out[1] = &tile->data.color[y  ][x+1][0];
   out[2] = &tile->data.color[y+1][x  ][0];
   out[3] = &tile->data.color[y+1][x+1][0];
}


/* Gather a quad of potentially non-adjacent texels:
 */
static INLINE void
get_texel_quad_2d_no_border(const struct sp_sampler_varient *samp,
			    union tex_tile_address addr,
			    int x0, int y0, 
			    int x1, int y1,
			    const float *out[4])
{
   out[0] = get_texel_2d_no_border( samp, addr, x0, y0 );
   out[1] = get_texel_2d_no_border( samp, addr, x1, y0 );
   out[2] = get_texel_2d_no_border( samp, addr, x0, y1 );
   out[3] = get_texel_2d_no_border( samp, addr, x1, y1 );
}

/* Can involve a lot of unnecessary checks for border color:
 */
static INLINE void
get_texel_quad_2d(const struct sp_sampler_varient *samp,
		  union tex_tile_address addr,
		  int x0, int y0, 
		  int x1, int y1,
		  const float *out[4])
{
   out[0] = get_texel_2d( samp, addr, x0, y0 );
   out[1] = get_texel_2d( samp, addr, x1, y0 );
   out[3] = get_texel_2d( samp, addr, x1, y1 );
   out[2] = get_texel_2d( samp, addr, x0, y1 );
}



/* 3d varients:
 */
static INLINE const float *
get_texel_3d_no_border(const struct sp_sampler_varient *samp,
                       union tex_tile_address addr, int x, int y, int z)
{
   const struct softpipe_tex_cached_tile *tile;

   addr.bits.x = x / TILE_SIZE;
   addr.bits.y = y / TILE_SIZE;
   addr.bits.z = z;
   y %= TILE_SIZE;
   x %= TILE_SIZE;

   tile = sp_get_cached_tile_tex(samp->cache, addr);

   return &tile->data.color[y][x][0];
}


static INLINE const float *
get_texel_3d(const struct sp_sampler_varient *samp,
	     union tex_tile_address addr, int x, int y, int z)
{
   const struct pipe_texture *texture = samp->texture;
   unsigned level = addr.bits.level;

   if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
       y < 0 || y >= (int) u_minify(texture->height0, level) ||
       z < 0 || z >= (int) u_minify(texture->depth0, level)) {
      return samp->sampler->border_color;
   }
   else {
      return get_texel_3d_no_border( samp, addr, x, y, z );
   }
}


/**
 * Given the logbase2 of a mipmap's base level size and a mipmap level,
 * return the size (in texels) of that mipmap level.
 * For example, if level[0].width = 256 then base_pot will be 8.
 * If level = 2, then we'll return 64 (the width at level=2).
 * Return 1 if level > base_pot.
 */
static INLINE unsigned
pot_level_size(unsigned base_pot, unsigned level)
{
   return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
}


/* Some image-filter fastpaths:
 */
static INLINE void
img_filter_2d_linear_repeat_POT(struct tgsi_sampler *tgsi_sampler,
                                const float s[QUAD_SIZE],
                                const float t[QUAD_SIZE],
                                const float p[QUAD_SIZE],
                                const float c0[QUAD_SIZE],
                                enum tgsi_sampler_control control,
                                float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   unsigned  j;
   unsigned level = samp->level;
   unsigned xpot = pot_level_size(samp->xpot, level);
   unsigned ypot = pot_level_size(samp->ypot, level);
   unsigned xmax = (xpot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, xpot) - 1; */
   unsigned ymax = (ypot - 1) & (TILE_SIZE - 1); /* MIN2(TILE_SIZE, ypot) - 1; */
   union tex_tile_address addr;

   addr.value = 0;
   addr.bits.level = samp->level;

   for (j = 0; j < QUAD_SIZE; j++) {
      int c;

      float u = s[j] * xpot - 0.5F;
      float v = t[j] * ypot - 0.5F;

      int uflr = util_ifloor(u);
      int vflr = util_ifloor(v);

      float xw = u - (float)uflr;
      float yw = v - (float)vflr;

      int x0 = uflr & (xpot - 1);
      int y0 = vflr & (ypot - 1);

      const float *tx[4];      
      
      /* Can we fetch all four at once:
       */
      if (x0 < xmax && y0 < ymax) {
         get_texel_quad_2d_no_border_single_tile(samp, addr, x0, y0, tx);
      }
      else {
         unsigned x1 = (x0 + 1) & (xpot - 1);
         unsigned y1 = (y0 + 1) & (ypot - 1);
         get_texel_quad_2d_no_border(samp, addr, x0, y0, x1, y1, tx);
      }

      /* interpolate R, G, B, A */
      for (c = 0; c < 4; c++) {
         rgba[c][j] = lerp_2d(xw, yw, 
                              tx[0][c], tx[1][c], 
                              tx[2][c], tx[3][c]);
      }
   }
}


static INLINE void
img_filter_2d_nearest_repeat_POT(struct tgsi_sampler *tgsi_sampler,
                                 const float s[QUAD_SIZE],
                                 const float t[QUAD_SIZE],
                                 const float p[QUAD_SIZE],
                                 const float c0[QUAD_SIZE],
                                 enum tgsi_sampler_control control,
                                 float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   unsigned  j;
   unsigned level = samp->level;
   unsigned xpot = pot_level_size(samp->xpot, level);
   unsigned ypot = pot_level_size(samp->ypot, level);
   union tex_tile_address addr;

   addr.value = 0;
   addr.bits.level = samp->level;

   for (j = 0; j < QUAD_SIZE; j++) {
      int c;

      float u = s[j] * xpot;
      float v = t[j] * ypot;

      int uflr = util_ifloor(u);
      int vflr = util_ifloor(v);

      int x0 = uflr & (xpot - 1);
      int y0 = vflr & (ypot - 1);

      const float *out = get_texel_2d_no_border(samp, addr, x0, y0);

      for (c = 0; c < 4; c++) {
         rgba[c][j] = out[c];
      }
   }
}


static INLINE void
img_filter_2d_nearest_clamp_POT(struct tgsi_sampler *tgsi_sampler,
                                const float s[QUAD_SIZE],
                                const float t[QUAD_SIZE],
                                const float p[QUAD_SIZE],
                                const float c0[QUAD_SIZE],
                                enum tgsi_sampler_control control,
                                float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   unsigned  j;
   unsigned level = samp->level;
   unsigned xpot = pot_level_size(samp->xpot, level);
   unsigned ypot = pot_level_size(samp->ypot, level);
   union tex_tile_address addr;

   addr.value = 0;
   addr.bits.level = samp->level;

   for (j = 0; j < QUAD_SIZE; j++) {
      int c;

      float u = s[j] * xpot;
      float v = t[j] * ypot;

      int x0, y0;
      const float *out;

      x0 = util_ifloor(u);
      if (x0 < 0) 
         x0 = 0;
      else if (x0 > xpot - 1)
         x0 = xpot - 1;

      y0 = util_ifloor(v);
      if (y0 < 0) 
         y0 = 0;
      else if (y0 > ypot - 1)
         y0 = ypot - 1;
      
      out = get_texel_2d_no_border(samp, addr, x0, y0);

      for (c = 0; c < 4; c++) {
         rgba[c][j] = out[c];
      }
   }
}


static void
img_filter_1d_nearest(struct tgsi_sampler *tgsi_sampler,
                        const float s[QUAD_SIZE],
                        const float t[QUAD_SIZE],
                        const float p[QUAD_SIZE],
                        const float c0[QUAD_SIZE],
                        enum tgsi_sampler_control control,
                        float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   unsigned level0, j;
   int width;
   int x[4];
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);

   assert(width > 0);

   addr.value = 0;
   addr.bits.level = samp->level;

   samp->nearest_texcoord_s(s, width, x);

   for (j = 0; j < QUAD_SIZE; j++) {
      const float *out = get_texel_2d(samp, addr, x[j], 0);
      int c;
      for (c = 0; c < 4; c++) {
         rgba[c][j] = out[c];
      }
   }
}


static void
img_filter_2d_nearest(struct tgsi_sampler *tgsi_sampler,
                      const float s[QUAD_SIZE],
                      const float t[QUAD_SIZE],
                      const float p[QUAD_SIZE],
                      const float c0[QUAD_SIZE],
                      enum tgsi_sampler_control control,
                      float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   unsigned level0, j;
   int width, height;
   int x[4], y[4];
   union tex_tile_address addr;


   level0 = samp->level;
   width = u_minify(texture->width0, level0);
   height = u_minify(texture->height0, level0);

   assert(width > 0);
   assert(height > 0);
 
   addr.value = 0;
   addr.bits.level = samp->level;

   samp->nearest_texcoord_s(s, width, x);
   samp->nearest_texcoord_t(t, height, y);

   for (j = 0; j < QUAD_SIZE; j++) {
      const float *out = get_texel_2d(samp, addr, x[j], y[j]);
      int c;
      for (c = 0; c < 4; c++) {
         rgba[c][j] = out[c];
      }
   }
}


static INLINE union tex_tile_address
face(union tex_tile_address addr, unsigned face )
{
   addr.bits.face = face;
   return addr;
}


static void
img_filter_cube_nearest(struct tgsi_sampler *tgsi_sampler,
                        const float s[QUAD_SIZE],
                        const float t[QUAD_SIZE],
                        const float p[QUAD_SIZE],
                        const float c0[QUAD_SIZE],
                        enum tgsi_sampler_control control,
                        float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   const unsigned *faces = samp->faces; /* zero when not cube-mapping */
   unsigned level0, j;
   int width, height;
   int x[4], y[4];
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);
   height = u_minify(texture->height0, level0);

   assert(width > 0);
   assert(height > 0);
 
   addr.value = 0;
   addr.bits.level = samp->level;

   samp->nearest_texcoord_s(s, width, x);
   samp->nearest_texcoord_t(t, height, y);

   for (j = 0; j < QUAD_SIZE; j++) {
      const float *out = get_texel_2d(samp, face(addr, faces[j]), x[j], y[j]);
      int c;
      for (c = 0; c < 4; c++) {
         rgba[c][j] = out[c];
      }
   }
}


static void
img_filter_3d_nearest(struct tgsi_sampler *tgsi_sampler,
                      const float s[QUAD_SIZE],
                      const float t[QUAD_SIZE],
                      const float p[QUAD_SIZE],
                      const float c0[QUAD_SIZE],
                      enum tgsi_sampler_control control,
                      float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   unsigned level0, j;
   int width, height, depth;
   int x[4], y[4], z[4];
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);
   height = u_minify(texture->height0, level0);
   depth = u_minify(texture->depth0, level0);

   assert(width > 0);
   assert(height > 0);
   assert(depth > 0);

   samp->nearest_texcoord_s(s, width,  x);
   samp->nearest_texcoord_t(t, height, y);
   samp->nearest_texcoord_p(p, depth,  z);

   addr.value = 0;
   addr.bits.level = samp->level;

   for (j = 0; j < QUAD_SIZE; j++) {
      const float *out = get_texel_3d(samp, addr, x[j], y[j], z[j]);
      int c;
      for (c = 0; c < 4; c++) {
         rgba[c][j] = out[c];
      }      
   }
}


static void
img_filter_1d_linear(struct tgsi_sampler *tgsi_sampler,
                     const float s[QUAD_SIZE],
                     const float t[QUAD_SIZE],
                     const float p[QUAD_SIZE],
                     const float c0[QUAD_SIZE],
                     enum tgsi_sampler_control control,
                     float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   unsigned level0, j;
   int width;
   int x0[4], x1[4];
   float xw[4]; /* weights */
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);

   assert(width > 0);

   addr.value = 0;
   addr.bits.level = samp->level;

   samp->linear_texcoord_s(s, width, x0, x1, xw);

   for (j = 0; j < QUAD_SIZE; j++) {
      const float *tx0 = get_texel_2d(samp, addr, x0[j], 0);
      const float *tx1 = get_texel_2d(samp, addr, x1[j], 0);
      int c;

      /* interpolate R, G, B, A */
      for (c = 0; c < 4; c++) {
         rgba[c][j] = lerp(xw[j], tx0[c], tx1[c]);
      }
   }
}


static void
img_filter_2d_linear(struct tgsi_sampler *tgsi_sampler,
                     const float s[QUAD_SIZE],
                     const float t[QUAD_SIZE],
                     const float p[QUAD_SIZE],
                     const float c0[QUAD_SIZE],
                     enum tgsi_sampler_control control,
                     float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   unsigned level0, j;
   int width, height;
   int x0[4], y0[4], x1[4], y1[4];
   float xw[4], yw[4]; /* weights */
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);
   height = u_minify(texture->height0, level0);

   assert(width > 0);
   assert(height > 0);

   addr.value = 0;
   addr.bits.level = samp->level;

   samp->linear_texcoord_s(s, width,  x0, x1, xw);
   samp->linear_texcoord_t(t, height, y0, y1, yw);

   for (j = 0; j < QUAD_SIZE; j++) {
      const float *tx0 = get_texel_2d(samp, addr, x0[j], y0[j]);
      const float *tx1 = get_texel_2d(samp, addr, x1[j], y0[j]);
      const float *tx2 = get_texel_2d(samp, addr, x0[j], y1[j]);
      const float *tx3 = get_texel_2d(samp, addr, x1[j], y1[j]);
      int c;

      /* interpolate R, G, B, A */
      for (c = 0; c < 4; c++) {
         rgba[c][j] = lerp_2d(xw[j], yw[j],
                              tx0[c], tx1[c],
                              tx2[c], tx3[c]);
      }
   }
}


static void
img_filter_cube_linear(struct tgsi_sampler *tgsi_sampler,
                       const float s[QUAD_SIZE],
                       const float t[QUAD_SIZE],
                       const float p[QUAD_SIZE],
                       const float c0[QUAD_SIZE],
                       enum tgsi_sampler_control control,
                       float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   const unsigned *faces = samp->faces; /* zero when not cube-mapping */
   unsigned level0, j;
   int width, height;
   int x0[4], y0[4], x1[4], y1[4];
   float xw[4], yw[4]; /* weights */
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);
   height = u_minify(texture->height0, level0);

   assert(width > 0);
   assert(height > 0);

   addr.value = 0;
   addr.bits.level = samp->level;

   samp->linear_texcoord_s(s, width,  x0, x1, xw);
   samp->linear_texcoord_t(t, height, y0, y1, yw);

   for (j = 0; j < QUAD_SIZE; j++) {
      union tex_tile_address addrj = face(addr, faces[j]);
      const float *tx0 = get_texel_2d(samp, addrj, x0[j], y0[j]);
      const float *tx1 = get_texel_2d(samp, addrj, x1[j], y0[j]);
      const float *tx2 = get_texel_2d(samp, addrj, x0[j], y1[j]);
      const float *tx3 = get_texel_2d(samp, addrj, x1[j], y1[j]);
      int c;

      /* interpolate R, G, B, A */
      for (c = 0; c < 4; c++) {
         rgba[c][j] = lerp_2d(xw[j], yw[j],
                              tx0[c], tx1[c],
                              tx2[c], tx3[c]);
      }
   }
}


static void
img_filter_3d_linear(struct tgsi_sampler *tgsi_sampler,
                     const float s[QUAD_SIZE],
                     const float t[QUAD_SIZE],
                     const float p[QUAD_SIZE],
                     const float c0[QUAD_SIZE],
                     enum tgsi_sampler_control control,
                     float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   const struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   unsigned level0, j;
   int width, height, depth;
   int x0[4], x1[4], y0[4], y1[4], z0[4], z1[4];
   float xw[4], yw[4], zw[4]; /* interpolation weights */
   union tex_tile_address addr;

   level0 = samp->level;
   width = u_minify(texture->width0, level0);
   height = u_minify(texture->height0, level0);
   depth = u_minify(texture->depth0, level0);

   addr.value = 0;
   addr.bits.level = level0;

   assert(width > 0);
   assert(height > 0);
   assert(depth > 0);

   samp->linear_texcoord_s(s, width,  x0, x1, xw);
   samp->linear_texcoord_t(t, height, y0, y1, yw);
   samp->linear_texcoord_p(p, depth,  z0, z1, zw);

   for (j = 0; j < QUAD_SIZE; j++) {
      int c;

      const float *tx00 = get_texel_3d(samp, addr, x0[j], y0[j], z0[j]);
      const float *tx01 = get_texel_3d(samp, addr, x1[j], y0[j], z0[j]);
      const float *tx02 = get_texel_3d(samp, addr, x0[j], y1[j], z0[j]);
      const float *tx03 = get_texel_3d(samp, addr, x1[j], y1[j], z0[j]);
      
      const float *tx10 = get_texel_3d(samp, addr, x0[j], y0[j], z1[j]);
      const float *tx11 = get_texel_3d(samp, addr, x1[j], y0[j], z1[j]);
      const float *tx12 = get_texel_3d(samp, addr, x0[j], y1[j], z1[j]);
      const float *tx13 = get_texel_3d(samp, addr, x1[j], y1[j], z1[j]);
      
      /* interpolate R, G, B, A */
      for (c = 0; c < 4; c++) {
         rgba[c][j] = lerp_3d(xw[j], yw[j], zw[j],
                              tx00[c], tx01[c],
                              tx02[c], tx03[c],
                              tx10[c], tx11[c],
                              tx12[c], tx13[c]);
      }
   }
}


/* Calculate level of detail for every fragment.
 * Note that lambda has already been biased by global LOD bias.
 */
static INLINE void
compute_lod(const struct pipe_sampler_state *sampler,
            const float biased_lambda,
            const float lodbias[QUAD_SIZE],
            float lod[QUAD_SIZE])
{
   uint i;

   for (i = 0; i < QUAD_SIZE; i++) {
      lod[i] = biased_lambda + lodbias[i];
      lod[i] = CLAMP(lod[i], sampler->min_lod, sampler->max_lod);
   }
}


static void
mip_filter_linear(struct tgsi_sampler *tgsi_sampler,
                  const float s[QUAD_SIZE],
                  const float t[QUAD_SIZE],
                  const float p[QUAD_SIZE],
                  const float c0[QUAD_SIZE],
                  enum tgsi_sampler_control control,
                  float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   int level0;
   float lambda;
   float lod[QUAD_SIZE];

   if (control == tgsi_sampler_lod_bias) {
      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
      compute_lod(samp->sampler, lambda, c0, lod);
   } else {
      assert(control == tgsi_sampler_lod_explicit);

      memcpy(lod, c0, sizeof(lod));
   }

   /* XXX: Take into account all lod values.
    */
   lambda = lod[0];
   level0 = (int)lambda;

   if (lambda < 0.0) { 
      samp->level = 0;
      samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }
   else if (level0 >= texture->last_level) {
      samp->level = texture->last_level;
      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }
   else {
      float levelBlend = lambda - level0;
      float rgba0[4][4];
      float rgba1[4][4];
      int c,j;

      samp->level = level0;
      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);

      samp->level = level0+1;
      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);

      for (j = 0; j < QUAD_SIZE; j++) {
         for (c = 0; c < 4; c++) {
            rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
         }
      }
   }
}


/**
 * Compute nearest mipmap level from texcoords.
 * Then sample the texture level for four elements of a quad.
 * \param c0  the LOD bias factors, or absolute LODs (depending on control)
 */
static void
mip_filter_nearest(struct tgsi_sampler *tgsi_sampler,
                   const float s[QUAD_SIZE],
                   const float t[QUAD_SIZE],
                   const float p[QUAD_SIZE],
                   const float c0[QUAD_SIZE],
                   enum tgsi_sampler_control control,
                   float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   float lambda;
   float lod[QUAD_SIZE];

   if (control == tgsi_sampler_lod_bias) {
      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
      compute_lod(samp->sampler, lambda, c0, lod);
   } else {
      assert(control == tgsi_sampler_lod_explicit);

      memcpy(lod, c0, sizeof(lod));
   }

   /* XXX: Take into account all lod values.
    */
   lambda = lod[0];

   if (lambda < 0.0) { 
      samp->level = 0;
      samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }
   else {
      samp->level = (int)(lambda + 0.5) ;
      samp->level = MIN2(samp->level, (int)texture->last_level);
      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }

#if 0
   printf("RGBA %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
          rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
          rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
          rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
          rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
#endif
}


static void
mip_filter_none(struct tgsi_sampler *tgsi_sampler,
                const float s[QUAD_SIZE],
                const float t[QUAD_SIZE],
                const float p[QUAD_SIZE],
                const float c0[QUAD_SIZE],
                enum tgsi_sampler_control control,
                float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   float lambda;
   float lod[QUAD_SIZE];

   if (control == tgsi_sampler_lod_bias) {
      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
      compute_lod(samp->sampler, lambda, c0, lod);
   } else {
      assert(control == tgsi_sampler_lod_explicit);

      memcpy(lod, c0, sizeof(lod));
   }

   /* XXX: Take into account all lod values.
    */
   lambda = lod[0];

   if (lambda < 0.0) { 
      samp->mag_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }
   else {
      samp->min_img_filter(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }
}



/**
 * Specialized version of mip_filter_linear with hard-wired calls to
 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
 */
static void
mip_filter_linear_2d_linear_repeat_POT(
   struct tgsi_sampler *tgsi_sampler,
   const float s[QUAD_SIZE],
   const float t[QUAD_SIZE],
   const float p[QUAD_SIZE],
   const float c0[QUAD_SIZE],
   enum tgsi_sampler_control control,
   float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_texture *texture = samp->texture;
   int level0;
   float lambda;
   float lod[QUAD_SIZE];

   if (control == tgsi_sampler_lod_bias) {
      lambda = samp->compute_lambda(samp, s, t, p) + samp->sampler->lod_bias;
      compute_lod(samp->sampler, lambda, c0, lod);
   } else {
      assert(control == tgsi_sampler_lod_explicit);

      memcpy(lod, c0, sizeof(lod));
   }

   /* XXX: Take into account all lod values.
    */
   lambda = lod[0];
   level0 = (int)lambda;

   /* Catches both negative and large values of level0:
    */
   if ((unsigned)level0 >= texture->last_level) { 
      if (level0 < 0)
         samp->level = 0;
      else
         samp->level = texture->last_level;

      img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba);
   }
   else {
      float levelBlend = lambda - level0;
      float rgba0[4][4];
      float rgba1[4][4];
      int c,j;

      samp->level = level0;
      img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba0);

      samp->level = level0+1;
      img_filter_2d_linear_repeat_POT(tgsi_sampler, s, t, p, NULL, tgsi_sampler_lod_bias, rgba1);

      for (j = 0; j < QUAD_SIZE; j++) {
         for (c = 0; c < 4; c++) {
            rgba[c][j] = lerp(levelBlend, rgba0[c][j], rgba1[c][j]);
         }
      }
   }
}



/**
 * Do shadow/depth comparisons.
 */
static void
sample_compare(struct tgsi_sampler *tgsi_sampler,
               const float s[QUAD_SIZE],
               const float t[QUAD_SIZE],
               const float p[QUAD_SIZE],
               const float c0[QUAD_SIZE],
               enum tgsi_sampler_control control,
               float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   const struct pipe_sampler_state *sampler = samp->sampler;
   int j, k0, k1, k2, k3;
   float val;

   samp->mip_filter(tgsi_sampler, s, t, p, c0, control, rgba);

   /**
    * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
    * When we sampled the depth texture, the depth value was put into all
    * RGBA channels.  We look at the red channel here.
    */

   /* compare four texcoords vs. four texture samples */
   switch (sampler->compare_func) {
   case PIPE_FUNC_LESS:
      k0 = p[0] < rgba[0][0];
      k1 = p[1] < rgba[0][1];
      k2 = p[2] < rgba[0][2];
      k3 = p[3] < rgba[0][3];
      break;
   case PIPE_FUNC_LEQUAL:
      k0 = p[0] <= rgba[0][0];
      k1 = p[1] <= rgba[0][1];
      k2 = p[2] <= rgba[0][2];
      k3 = p[3] <= rgba[0][3];
      break;
   case PIPE_FUNC_GREATER:
      k0 = p[0] > rgba[0][0];
      k1 = p[1] > rgba[0][1];
      k2 = p[2] > rgba[0][2];
      k3 = p[3] > rgba[0][3];
      break;
   case PIPE_FUNC_GEQUAL:
      k0 = p[0] >= rgba[0][0];
      k1 = p[1] >= rgba[0][1];
      k2 = p[2] >= rgba[0][2];
      k3 = p[3] >= rgba[0][3];
      break;
   case PIPE_FUNC_EQUAL:
      k0 = p[0] == rgba[0][0];
      k1 = p[1] == rgba[0][1];
      k2 = p[2] == rgba[0][2];
      k3 = p[3] == rgba[0][3];
      break;
   case PIPE_FUNC_NOTEQUAL:
      k0 = p[0] != rgba[0][0];
      k1 = p[1] != rgba[0][1];
      k2 = p[2] != rgba[0][2];
      k3 = p[3] != rgba[0][3];
      break;
   case PIPE_FUNC_ALWAYS:
      k0 = k1 = k2 = k3 = 1;
      break;
   case PIPE_FUNC_NEVER:
      k0 = k1 = k2 = k3 = 0;
      break;
   default:
      k0 = k1 = k2 = k3 = 0;
      assert(0);
      break;
   }

   /* convert four pass/fail values to an intensity in [0,1] */
   val = 0.25F * (k0 + k1 + k2 + k3);

   /* XXX returning result for default GL_DEPTH_TEXTURE_MODE = GL_LUMINANCE */
   for (j = 0; j < 4; j++) {
      rgba[0][j] = rgba[1][j] = rgba[2][j] = val;
      rgba[3][j] = 1.0F;
   }
}


/**
 * Use 3D texcoords to choose a cube face, then sample the 2D cube faces.
 * Put face info into the sampler faces[] array.
 */
static void
sample_cube(struct tgsi_sampler *tgsi_sampler,
            const float s[QUAD_SIZE],
            const float t[QUAD_SIZE],
            const float p[QUAD_SIZE],
            const float c0[QUAD_SIZE],
            enum tgsi_sampler_control control,
            float rgba[NUM_CHANNELS][QUAD_SIZE])
{
   struct sp_sampler_varient *samp = sp_sampler_varient(tgsi_sampler);
   unsigned j;
   float ssss[4], tttt[4];
   unsigned face;

   /*
     major axis
     direction    target                             sc     tc    ma
     ----------   -------------------------------    ---    ---   ---
     +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
     -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
     +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
     -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
     +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
     -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
   */

   /* First choose the cube face.
    * Use the same cube face for all four pixels in the quad.
    *
    * This isn't ideal, but if we want to use a different cube face
    * per pixel in the quad, we'd have to also compute the per-face
    * LOD here too.  That's because the four post-face-selection
    * texcoords are no longer related to each other (they're
    * per-face!)  so we can't use subtraction to compute the partial
    * deriviates to compute the LOD.  Doing so (near cube edges
    * anyway) gives us pretty much random values.
    */
   {
      /* use the average of the four pixel's texcoords to choose the face */
      const float rx = 0.25 * (s[0] + s[1] + s[2] + s[3]);
      const float ry = 0.25 * (t[0] + t[1] + t[2] + t[3]);
      const float rz = 0.25 * (p[0] + p[1] + p[2] + p[3]);
      const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);

      if (arx >= ary && arx >= arz) {
         if (rx >= 0.0F) {
            face = PIPE_TEX_FACE_POS_X;
         }
         else {
            face = PIPE_TEX_FACE_NEG_X;
         }
      }
      else if (ary >= arx && ary >= arz) {
         if (ry >= 0.0F) {
            face = PIPE_TEX_FACE_POS_Y;
         }
         else {
            face = PIPE_TEX_FACE_NEG_Y;
         }
      }
      else {
         if (rz > 0.0F) {
            face = PIPE_TEX_FACE_POS_Z;
         }
         else {
            face = PIPE_TEX_FACE_NEG_Z;
         }
      }
   }

   /* Now compute the 2D _face_ texture coords from the
    * 3D _cube_ texture coords.
    */
   for (j = 0; j < QUAD_SIZE; j++) {
      const float rx = s[j], ry = t[j], rz = p[j];
      const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
      float sc, tc, ma;

      switch (face) {
      case PIPE_TEX_FACE_POS_X:
         sc = -rz;
         tc = -ry;
         ma = arx;
         break;
      case PIPE_TEX_FACE_NEG_X:
         sc = rz;
         tc = -ry;
         ma = arx;
         break;
      case PIPE_TEX_FACE_POS_Y:
         sc = rx;
         tc = rz;
         ma = ary;
         break;
      case PIPE_TEX_FACE_NEG_Y:
         sc = rx;
         tc = -rz;
         ma = ary;
         break;
      case PIPE_TEX_FACE_POS_Z:
         sc = rx;
         tc = -ry;
         ma = arz;
         break;
      case PIPE_TEX_FACE_NEG_Z:
         sc = -rx;
         tc = -ry;
         ma = arz;
         break;
      default:
         assert(0 && "bad cube face");
         sc = 0.0F;
         tc = 0.0F;
         ma = 0.0F;
      }

      {
	 const float ima = 1.0 / ma;
	 ssss[j] = ( sc * ima + 1.0F ) * 0.5F;
	 tttt[j] = ( tc * ima + 1.0F ) * 0.5F;
	 samp->faces[j] = face;
      }
   }

   /* In our little pipeline, the compare stage is next.  If compare
    * is not active, this will point somewhere deeper into the
    * pipeline, eg. to mip_filter or even img_filter.
    */
   samp->compare(tgsi_sampler, ssss, tttt, NULL, c0, control, rgba);
}



static wrap_nearest_func
get_nearest_unorm_wrap(unsigned mode)
{
   switch (mode) {
   case PIPE_TEX_WRAP_CLAMP:
      return wrap_nearest_unorm_clamp;
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
      return wrap_nearest_unorm_clamp_to_border;
   default:
      assert(0);
      return wrap_nearest_unorm_clamp;
   }
}


static wrap_nearest_func
get_nearest_wrap(unsigned mode)
{
   switch (mode) {
   case PIPE_TEX_WRAP_REPEAT:
      return wrap_nearest_repeat;
   case PIPE_TEX_WRAP_CLAMP:
      return wrap_nearest_clamp;
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
      return wrap_nearest_clamp_to_edge;
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
      return wrap_nearest_clamp_to_border;
   case PIPE_TEX_WRAP_MIRROR_REPEAT:
      return wrap_nearest_mirror_repeat;
   case PIPE_TEX_WRAP_MIRROR_CLAMP:
      return wrap_nearest_mirror_clamp;
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
      return wrap_nearest_mirror_clamp_to_edge;
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
      return wrap_nearest_mirror_clamp_to_border;
   default:
      assert(0);
      return wrap_nearest_repeat;
   }
}


static wrap_linear_func
get_linear_unorm_wrap(unsigned mode)
{
   switch (mode) {
   case PIPE_TEX_WRAP_CLAMP:
      return wrap_linear_unorm_clamp;
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
      return wrap_linear_unorm_clamp_to_border;
   default:
      assert(0);
      return wrap_linear_unorm_clamp;
   }
}


static wrap_linear_func
get_linear_wrap(unsigned mode)
{
   switch (mode) {
   case PIPE_TEX_WRAP_REPEAT:
      return wrap_linear_repeat;
   case PIPE_TEX_WRAP_CLAMP:
      return wrap_linear_clamp;
   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
      return wrap_linear_clamp_to_edge;
   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
      return wrap_linear_clamp_to_border;
   case PIPE_TEX_WRAP_MIRROR_REPEAT:
      return wrap_linear_mirror_repeat;
   case PIPE_TEX_WRAP_MIRROR_CLAMP:
      return wrap_linear_mirror_clamp;
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
      return wrap_linear_mirror_clamp_to_edge;
   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
      return wrap_linear_mirror_clamp_to_border;
   default:
      assert(0);
      return wrap_linear_repeat;
   }
}


static compute_lambda_func
get_lambda_func(const union sp_sampler_key key)
{
   if (key.bits.processor == TGSI_PROCESSOR_VERTEX)
      return compute_lambda_vert;
   
   switch (key.bits.target) {
   case PIPE_TEXTURE_1D:
      return compute_lambda_1d;
   case PIPE_TEXTURE_2D:
   case PIPE_TEXTURE_CUBE:
      return compute_lambda_2d;
   case PIPE_TEXTURE_3D:
      return compute_lambda_3d;
   default:
      assert(0);
      return compute_lambda_1d;
   }
}


static filter_func
get_img_filter(const union sp_sampler_key key,
               unsigned filter,
               const struct pipe_sampler_state *sampler)
{
   switch (key.bits.target) {
   case PIPE_TEXTURE_1D:
      if (filter == PIPE_TEX_FILTER_NEAREST) 
         return img_filter_1d_nearest;
      else
         return img_filter_1d_linear;
      break;
   case PIPE_TEXTURE_2D:
      /* Try for fast path:
       */
      if (key.bits.is_pot &&
          sampler->wrap_s == sampler->wrap_t &&
          sampler->normalized_coords) 
      {
         switch (sampler->wrap_s) {
         case PIPE_TEX_WRAP_REPEAT:
            switch (filter) {
            case PIPE_TEX_FILTER_NEAREST:
               return img_filter_2d_nearest_repeat_POT;
            case PIPE_TEX_FILTER_LINEAR:
               return img_filter_2d_linear_repeat_POT;
            default:
               break;
            }
            break;
         case PIPE_TEX_WRAP_CLAMP:
            switch (filter) {
            case PIPE_TEX_FILTER_NEAREST:
               return img_filter_2d_nearest_clamp_POT;
            default:
               break;
            }
         }
      }
      /* Otherwise use default versions:
       */
      if (filter == PIPE_TEX_FILTER_NEAREST) 
         return img_filter_2d_nearest;
      else
         return img_filter_2d_linear;
      break;
   case PIPE_TEXTURE_CUBE:
      if (filter == PIPE_TEX_FILTER_NEAREST) 
         return img_filter_cube_nearest;
      else
         return img_filter_cube_linear;
      break;
   case PIPE_TEXTURE_3D:
      if (filter == PIPE_TEX_FILTER_NEAREST) 
         return img_filter_3d_nearest;
      else
         return img_filter_3d_linear;
      break;
   default:
      assert(0);
      return img_filter_1d_nearest;
   }
}


/**
 * Bind the given texture object and texture cache to the sampler varient.
 */
void
sp_sampler_varient_bind_texture( struct sp_sampler_varient *samp,
                                 struct softpipe_tex_tile_cache *tex_cache,
                                 const struct pipe_texture *texture )
{
   const struct pipe_sampler_state *sampler = samp->sampler;

   samp->texture = texture;
   samp->cache = tex_cache;
   samp->xpot = util_unsigned_logbase2( texture->width0 );
   samp->ypot = util_unsigned_logbase2( texture->height0 );
   samp->level = CLAMP((int) sampler->min_lod, 0, (int) texture->last_level);
}


void
sp_sampler_varient_destroy( struct sp_sampler_varient *samp )
{
   FREE(samp);
}


/**
 * Create a sampler varient for a given set of non-orthogonal state.
 */
struct sp_sampler_varient *
sp_create_sampler_varient( const struct pipe_sampler_state *sampler,
                           const union sp_sampler_key key )
{
   struct sp_sampler_varient *samp = CALLOC_STRUCT(sp_sampler_varient);
   if (!samp)
      return NULL;

   samp->sampler = sampler;
   samp->key = key;

   /* Note that (for instance) linear_texcoord_s and
    * nearest_texcoord_s may be active at the same time, if the
    * sampler min_img_filter differs from its mag_img_filter.
    */
   if (sampler->normalized_coords) {
      samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
      samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
      samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
      
      samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
      samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
      samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
   }
   else {
      samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
      samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
      samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
      
      samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
      samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
      samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
   }
   
   samp->compute_lambda = get_lambda_func( key );

   samp->min_img_filter = get_img_filter(key, sampler->min_img_filter, sampler);
   samp->mag_img_filter = get_img_filter(key, sampler->mag_img_filter, sampler);

   switch (sampler->min_mip_filter) {
   case PIPE_TEX_MIPFILTER_NONE:
      if (sampler->min_img_filter == sampler->mag_img_filter) 
         samp->mip_filter = samp->min_img_filter;         
      else
         samp->mip_filter = mip_filter_none;
      break;

   case PIPE_TEX_MIPFILTER_NEAREST:
      samp->mip_filter = mip_filter_nearest;
      break;

   case PIPE_TEX_MIPFILTER_LINEAR:
      if (key.bits.is_pot &&
          sampler->min_img_filter == sampler->mag_img_filter &&
          sampler->normalized_coords &&
          sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
          sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
          sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR)
      {
         samp->mip_filter = mip_filter_linear_2d_linear_repeat_POT;
      }
      else 
      {
         samp->mip_filter = mip_filter_linear;
      }
      break;
   }

   if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
      samp->compare = sample_compare;
   }
   else {
      /* Skip compare operation by promoting the mip_filter function
       * pointer:
       */
      samp->compare = samp->mip_filter;
   }
   
   if (key.bits.target == PIPE_TEXTURE_CUBE) {
      samp->base.get_samples = sample_cube;
   }
   else {
      samp->faces[0] = 0;
      samp->faces[1] = 0;
      samp->faces[2] = 0;
      samp->faces[3] = 0;

      /* Skip cube face determination by promoting the compare
       * function pointer:
       */
      samp->base.get_samples = samp->compare;
   }

   return samp;
}