1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
|
#include "main/macros.h"
#include "program/prog_parameter.h"
#include "program/prog_print.h"
#include "program/prog_optimize.h"
#include "brw_context.h"
#include "brw_eu.h"
#include "brw_wm.h"
static struct brw_reg get_dst_reg(struct brw_wm_compile *c,
const struct prog_instruction *inst,
GLuint component);
/**
* Determine if the given fragment program uses GLSL features such
* as flow conditionals, loops, subroutines.
* Some GLSL shaders may use these features, others might not.
*/
GLboolean brw_wm_is_glsl(const struct gl_fragment_program *fp)
{
int i;
if (INTEL_DEBUG & DEBUG_GLSL_FORCE)
return GL_TRUE;
for (i = 0; i < fp->Base.NumInstructions; i++) {
const struct prog_instruction *inst = &fp->Base.Instructions[i];
switch (inst->Opcode) {
case OPCODE_ARL:
case OPCODE_IF:
case OPCODE_ENDIF:
case OPCODE_CAL:
case OPCODE_BRK:
case OPCODE_RET:
case OPCODE_BGNLOOP:
return GL_TRUE;
default:
break;
}
}
return GL_FALSE;
}
static void
reclaim_temps(struct brw_wm_compile *c);
/** Mark GRF register as used. */
static void
prealloc_grf(struct brw_wm_compile *c, int r)
{
c->used_grf[r] = GL_TRUE;
}
/** Mark given GRF register as not in use. */
static void
release_grf(struct brw_wm_compile *c, int r)
{
/*assert(c->used_grf[r]);*/
c->used_grf[r] = GL_FALSE;
c->first_free_grf = MIN2(c->first_free_grf, r);
}
/** Return index of a free GRF, mark it as used. */
static int
alloc_grf(struct brw_wm_compile *c)
{
GLuint r;
for (r = c->first_free_grf; r < BRW_WM_MAX_GRF; r++) {
if (!c->used_grf[r]) {
c->used_grf[r] = GL_TRUE;
c->first_free_grf = r + 1; /* a guess */
return r;
}
}
/* no free temps, try to reclaim some */
reclaim_temps(c);
c->first_free_grf = 0;
/* try alloc again */
for (r = c->first_free_grf; r < BRW_WM_MAX_GRF; r++) {
if (!c->used_grf[r]) {
c->used_grf[r] = GL_TRUE;
c->first_free_grf = r + 1; /* a guess */
return r;
}
}
for (r = 0; r < BRW_WM_MAX_GRF; r++) {
assert(c->used_grf[r]);
}
/* really, no free GRF regs found */
if (!c->out_of_regs) {
/* print warning once per compilation */
_mesa_warning(NULL, "i965: ran out of registers for fragment program");
c->out_of_regs = GL_TRUE;
}
return -1;
}
/** Return number of GRF registers used */
static int
num_grf_used(const struct brw_wm_compile *c)
{
int r;
for (r = BRW_WM_MAX_GRF - 1; r >= 0; r--)
if (c->used_grf[r])
return r + 1;
return 0;
}
/**
* Record the mapping of a Mesa register to a hardware register.
*/
static void set_reg(struct brw_wm_compile *c, int file, int index,
int component, struct brw_reg reg)
{
c->wm_regs[file][index][component].reg = reg;
c->wm_regs[file][index][component].inited = GL_TRUE;
}
static struct brw_reg alloc_tmp(struct brw_wm_compile *c)
{
struct brw_reg reg;
/* if we need to allocate another temp, grow the tmp_regs[] array */
if (c->tmp_index == c->tmp_max) {
int r = alloc_grf(c);
if (r < 0) {
/*printf("Out of temps in %s\n", __FUNCTION__);*/
r = 50; /* XXX random register! */
}
c->tmp_regs[ c->tmp_max++ ] = r;
}
/* form the GRF register */
reg = brw_vec8_grf(c->tmp_regs[ c->tmp_index++ ], 0);
/*printf("alloc_temp %d\n", reg.nr);*/
assert(reg.nr < BRW_WM_MAX_GRF);
return reg;
}
/**
* Save current temp register info.
* There must be a matching call to release_tmps().
*/
static int mark_tmps(struct brw_wm_compile *c)
{
return c->tmp_index;
}
static void release_tmps(struct brw_wm_compile *c, int mark)
{
c->tmp_index = mark;
}
/**
* Convert Mesa src register to brw register.
*
* Since we're running in SOA mode each Mesa register corresponds to four
* hardware registers. We allocate the hardware registers as needed here.
*
* \param file register file, one of PROGRAM_x
* \param index register number
* \param component src component (X=0, Y=1, Z=2, W=3)
* \param nr not used?!?
* \param neg negate value?
* \param abs take absolute value?
*/
static struct brw_reg
get_reg(struct brw_wm_compile *c, int file, int index, int component,
int nr, GLuint neg, GLuint abs)
{
struct brw_reg reg;
switch (file) {
case PROGRAM_STATE_VAR:
case PROGRAM_CONSTANT:
case PROGRAM_UNIFORM:
file = PROGRAM_STATE_VAR;
break;
case PROGRAM_UNDEFINED:
return brw_null_reg();
case PROGRAM_TEMPORARY:
case PROGRAM_INPUT:
case PROGRAM_OUTPUT:
case PROGRAM_PAYLOAD:
break;
default:
_mesa_problem(NULL, "Unexpected file in get_reg()");
return brw_null_reg();
}
assert(index < 256);
assert(component < 4);
/* see if we've already allocated a HW register for this Mesa register */
if (c->wm_regs[file][index][component].inited) {
/* yes, re-use */
reg = c->wm_regs[file][index][component].reg;
}
else {
/* no, allocate new register */
int grf = alloc_grf(c);
/*printf("alloc grf %d for reg %d:%d.%d\n", grf, file, index, component);*/
if (grf < 0) {
/* totally out of temps */
grf = 51; /* XXX random register! */
}
reg = brw_vec8_grf(grf, 0);
/*printf("Alloc new grf %d for %d.%d\n", reg.nr, index, component);*/
set_reg(c, file, index, component, reg);
}
if (neg & (1 << component)) {
reg = negate(reg);
}
if (abs)
reg = brw_abs(reg);
return reg;
}
/**
* This is called if we run out of GRF registers. Examine the live intervals
* of temp regs in the program and free those which won't be used again.
*/
static void
reclaim_temps(struct brw_wm_compile *c)
{
GLint intBegin[MAX_PROGRAM_TEMPS];
GLint intEnd[MAX_PROGRAM_TEMPS];
int index;
/*printf("Reclaim temps:\n");*/
_mesa_find_temp_intervals(c->prog_instructions, c->nr_fp_insns,
intBegin, intEnd);
for (index = 0; index < MAX_PROGRAM_TEMPS; index++) {
if (intEnd[index] != -1 && intEnd[index] < c->cur_inst) {
/* program temp[i] can be freed */
int component;
/*printf(" temp[%d] is dead\n", index);*/
for (component = 0; component < 4; component++) {
if (c->wm_regs[PROGRAM_TEMPORARY][index][component].inited) {
int r = c->wm_regs[PROGRAM_TEMPORARY][index][component].reg.nr;
release_grf(c, r);
/*
printf(" Reclaim temp %d, reg %d at inst %d\n",
index, r, c->cur_inst);
*/
c->wm_regs[PROGRAM_TEMPORARY][index][component].inited = GL_FALSE;
}
}
}
}
}
/**
* Preallocate registers. This sets up the Mesa to hardware register
* mapping for certain registers, such as constants (uniforms/state vars)
* and shader inputs.
*/
static void prealloc_reg(struct brw_wm_compile *c)
{
struct intel_context *intel = &c->func.brw->intel;
int i, j;
struct brw_reg reg;
int urb_read_length = 0;
GLuint inputs = FRAG_BIT_WPOS | c->fp_interp_emitted;
GLuint reg_index = 0;
memset(c->used_grf, GL_FALSE, sizeof(c->used_grf));
c->first_free_grf = 0;
for (i = 0; i < 4; i++) {
if (i < (c->key.nr_payload_regs + 1) / 2)
reg = brw_vec8_grf(i * 2, 0);
else
reg = brw_vec8_grf(0, 0);
set_reg(c, PROGRAM_PAYLOAD, PAYLOAD_DEPTH, i, reg);
}
reg_index += c->key.nr_payload_regs;
/* constants */
{
const GLuint nr_params = c->fp->program.Base.Parameters->NumParameters;
const GLuint nr_temps = c->fp->program.Base.NumTemporaries;
/* use a real constant buffer, or just use a section of the GRF? */
/* XXX this heuristic may need adjustment... */
if ((nr_params + nr_temps) * 4 + reg_index > 80)
c->fp->use_const_buffer = GL_TRUE;
else
c->fp->use_const_buffer = GL_FALSE;
/*printf("WM use_const_buffer = %d\n", c->fp->use_const_buffer);*/
if (c->fp->use_const_buffer) {
/* We'll use a real constant buffer and fetch constants from
* it with a dataport read message.
*/
/* number of float constants in CURBE */
c->prog_data.nr_params = 0;
}
else {
const struct gl_program_parameter_list *plist =
c->fp->program.Base.Parameters;
int index = 0;
/* number of float constants in CURBE */
c->prog_data.nr_params = 4 * nr_params;
/* loop over program constants (float[4]) */
for (i = 0; i < nr_params; i++) {
/* loop over XYZW channels */
for (j = 0; j < 4; j++, index++) {
reg = brw_vec1_grf(reg_index + index / 8, index % 8);
/* Save pointer to parameter/constant value.
* Constants will be copied in prepare_constant_buffer()
*/
c->prog_data.param[index] = &plist->ParameterValues[i][j];
set_reg(c, PROGRAM_STATE_VAR, i, j, reg);
}
}
/* number of constant regs used (each reg is float[8]) */
c->nr_creg = 2 * ((4 * nr_params + 15) / 16);
reg_index += c->nr_creg;
}
}
/* fragment shader inputs */
for (i = 0; i < VERT_RESULT_MAX; i++) {
int fp_input;
if (i >= VERT_RESULT_VAR0)
fp_input = i - VERT_RESULT_VAR0 + FRAG_ATTRIB_VAR0;
else if (i <= VERT_RESULT_TEX7)
fp_input = i;
else
fp_input = -1;
if (fp_input >= 0 && inputs & (1 << fp_input)) {
urb_read_length = reg_index;
reg = brw_vec8_grf(reg_index, 0);
for (j = 0; j < 4; j++)
set_reg(c, PROGRAM_PAYLOAD, fp_input, j, reg);
}
if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
reg_index += 2;
}
}
c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
c->prog_data.urb_read_length = urb_read_length;
c->prog_data.curb_read_length = c->nr_creg;
c->emit_mask_reg = brw_uw1_reg(BRW_GENERAL_REGISTER_FILE, reg_index, 0);
reg_index++;
c->stack = brw_uw16_reg(BRW_GENERAL_REGISTER_FILE, reg_index, 0);
reg_index += 2;
/* mark GRF regs [0..reg_index-1] as in-use */
for (i = 0; i < reg_index; i++)
prealloc_grf(c, i);
/* Don't use GRF 126, 127. Using them seems to lead to GPU lock-ups */
prealloc_grf(c, 126);
prealloc_grf(c, 127);
for (i = 0; i < c->nr_fp_insns; i++) {
const struct prog_instruction *inst = &c->prog_instructions[i];
struct brw_reg dst[4];
switch (inst->Opcode) {
case OPCODE_TEX:
case OPCODE_TXB:
/* Allocate the channels of texture results contiguously,
* since they are written out that way by the sampler unit.
*/
for (j = 0; j < 4; j++) {
dst[j] = get_dst_reg(c, inst, j);
if (j != 0)
assert(dst[j].nr == dst[j - 1].nr + 1);
}
break;
default:
break;
}
}
for (i = 0; i < c->nr_fp_insns; i++) {
const struct prog_instruction *inst = &c->prog_instructions[i];
switch (inst->Opcode) {
case WM_DELTAXY:
/* Allocate WM_DELTAXY destination on G45/GM45 to an
* even-numbered GRF if possible so that we can use the PLN
* instruction.
*/
if (inst->DstReg.WriteMask == WRITEMASK_XY &&
!c->wm_regs[inst->DstReg.File][inst->DstReg.Index][0].inited &&
!c->wm_regs[inst->DstReg.File][inst->DstReg.Index][1].inited &&
(IS_G4X(intel->intelScreen->deviceID) || intel->gen == 5)) {
int grf;
for (grf = c->first_free_grf & ~1;
grf < BRW_WM_MAX_GRF;
grf += 2)
{
if (!c->used_grf[grf] && !c->used_grf[grf + 1]) {
c->used_grf[grf] = GL_TRUE;
c->used_grf[grf + 1] = GL_TRUE;
c->first_free_grf = grf + 2; /* a guess */
set_reg(c, inst->DstReg.File, inst->DstReg.Index, 0,
brw_vec8_grf(grf, 0));
set_reg(c, inst->DstReg.File, inst->DstReg.Index, 1,
brw_vec8_grf(grf + 1, 0));
break;
}
}
}
default:
break;
}
}
/* An instruction may reference up to three constants.
* They'll be found in these registers.
* XXX alloc these on demand!
*/
if (c->fp->use_const_buffer) {
for (i = 0; i < 3; i++) {
c->current_const[i].index = -1;
c->current_const[i].reg = brw_vec8_grf(alloc_grf(c), 0);
}
}
#if 0
printf("USE CONST BUFFER? %d\n", c->fp->use_const_buffer);
printf("AFTER PRE_ALLOC, reg_index = %d\n", reg_index);
#endif
}
/**
* Check if any of the instruction's src registers are constants, uniforms,
* or statevars. If so, fetch any constants that we don't already have in
* the three GRF slots.
*/
static void fetch_constants(struct brw_wm_compile *c,
const struct prog_instruction *inst)
{
struct brw_compile *p = &c->func;
GLuint i;
/* loop over instruction src regs */
for (i = 0; i < 3; i++) {
const struct prog_src_register *src = &inst->SrcReg[i];
if (src->File == PROGRAM_STATE_VAR ||
src->File == PROGRAM_CONSTANT ||
src->File == PROGRAM_UNIFORM) {
c->current_const[i].index = src->Index;
#if 0
printf(" fetch const[%d] for arg %d into reg %d\n",
src->Index, i, c->current_const[i].reg.nr);
#endif
/* need to fetch the constant now */
brw_dp_READ_4(p,
c->current_const[i].reg, /* writeback dest */
src->RelAddr, /* relative indexing? */
16 * src->Index, /* byte offset */
SURF_INDEX_FRAG_CONST_BUFFER/* binding table index */
);
}
}
}
/**
* Convert Mesa dst register to brw register.
*/
static struct brw_reg get_dst_reg(struct brw_wm_compile *c,
const struct prog_instruction *inst,
GLuint component)
{
const int nr = 1;
return get_reg(c, inst->DstReg.File, inst->DstReg.Index, component, nr,
0, 0);
}
static struct brw_reg
get_src_reg_const(struct brw_wm_compile *c,
const struct prog_instruction *inst,
GLuint srcRegIndex, GLuint component)
{
/* We should have already fetched the constant from the constant
* buffer in fetch_constants(). Now we just have to return a
* register description that extracts the needed component and
* smears it across all eight vector components.
*/
const struct prog_src_register *src = &inst->SrcReg[srcRegIndex];
struct brw_reg const_reg;
assert(component < 4);
assert(srcRegIndex < 3);
assert(c->current_const[srcRegIndex].index != -1);
const_reg = c->current_const[srcRegIndex].reg;
/* extract desired float from the const_reg, and smear */
const_reg = stride(const_reg, 0, 1, 0);
const_reg.subnr = component * 4;
if (src->Negate & (1 << component))
const_reg = negate(const_reg);
if (src->Abs)
const_reg = brw_abs(const_reg);
#if 0
printf(" form const[%d].%d for arg %d, reg %d\n",
c->current_const[srcRegIndex].index,
component,
srcRegIndex,
const_reg.nr);
#endif
return const_reg;
}
/**
* Convert Mesa src register to brw register.
*/
static struct brw_reg get_src_reg(struct brw_wm_compile *c,
const struct prog_instruction *inst,
GLuint srcRegIndex, GLuint channel)
{
const struct prog_src_register *src = &inst->SrcReg[srcRegIndex];
const GLuint nr = 1;
const GLuint component = GET_SWZ(src->Swizzle, channel);
/* Only one immediate value can be used per native opcode, and it
* has be in the src1 slot, so not all Mesa instructions will get
* to take advantage of immediate constants.
*/
if (brw_wm_arg_can_be_immediate(inst->Opcode, srcRegIndex)) {
const struct gl_program_parameter_list *params;
params = c->fp->program.Base.Parameters;
/* Extended swizzle terms */
if (component == SWIZZLE_ZERO) {
return brw_imm_f(0.0F);
} else if (component == SWIZZLE_ONE) {
if (src->Negate)
return brw_imm_f(-1.0F);
else
return brw_imm_f(1.0F);
}
if (src->File == PROGRAM_CONSTANT) {
float f = params->ParameterValues[src->Index][component];
if (src->Abs)
f = fabs(f);
if (src->Negate)
f = -f;
return brw_imm_f(f);
}
}
if (c->fp->use_const_buffer &&
(src->File == PROGRAM_STATE_VAR ||
src->File == PROGRAM_CONSTANT ||
src->File == PROGRAM_UNIFORM)) {
return get_src_reg_const(c, inst, srcRegIndex, component);
}
else {
/* other type of source register */
return get_reg(c, src->File, src->Index, component, nr,
src->Negate, src->Abs);
}
}
static void emit_arl(struct brw_wm_compile *c,
const struct prog_instruction *inst)
{
struct brw_compile *p = &c->func;
struct brw_reg src0, addr_reg;
brw_set_saturate(p, (inst->SaturateMode != SATURATE_OFF) ? 1 : 0);
addr_reg = brw_uw8_reg(BRW_ARCHITECTURE_REGISTER_FILE,
BRW_ARF_ADDRESS, 0);
src0 = get_src_reg(c, inst, 0, 0); /* channel 0 */
brw_MOV(p, addr_reg, src0);
brw_set_saturate(p, 0);
}
/**
* For GLSL shaders, this KIL will be unconditional.
* It may be contained inside an IF/ENDIF structure of course.
*/
static void emit_kil(struct brw_wm_compile *c)
{
struct brw_compile *p = &c->func;
struct brw_reg depth = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_NOT(p, c->emit_mask_reg, brw_mask_reg(1)); /* IMASK */
brw_AND(p, depth, c->emit_mask_reg, depth);
brw_pop_insn_state(p);
}
static INLINE struct brw_reg high_words( struct brw_reg reg )
{
return stride( suboffset( retype( reg, BRW_REGISTER_TYPE_W ), 1 ),
0, 8, 2 );
}
static INLINE struct brw_reg low_words( struct brw_reg reg )
{
return stride( retype( reg, BRW_REGISTER_TYPE_W ), 0, 8, 2 );
}
static INLINE struct brw_reg even_bytes( struct brw_reg reg )
{
return stride( retype( reg, BRW_REGISTER_TYPE_B ), 0, 16, 2 );
}
static INLINE struct brw_reg odd_bytes( struct brw_reg reg )
{
return stride( suboffset( retype( reg, BRW_REGISTER_TYPE_B ), 1 ),
0, 16, 2 );
}
/**
* Resolve subroutine calls after code emit is done.
*/
static void post_wm_emit( struct brw_wm_compile *c )
{
brw_resolve_cals(&c->func);
}
static void
get_argument_regs(struct brw_wm_compile *c,
const struct prog_instruction *inst,
int index,
struct brw_reg *dst,
struct brw_reg *regs,
int mask)
{
struct brw_compile *p = &c->func;
int i, j;
for (i = 0; i < 4; i++) {
if (mask & (1 << i)) {
regs[i] = get_src_reg(c, inst, index, i);
/* Unalias destination registers from our sources. */
if (regs[i].file == BRW_GENERAL_REGISTER_FILE) {
for (j = 0; j < 4; j++) {
if (memcmp(®s[i], &dst[j], sizeof(regs[0])) == 0) {
struct brw_reg tmp = alloc_tmp(c);
brw_MOV(p, tmp, regs[i]);
regs[i] = tmp;
break;
}
}
}
}
}
}
static void brw_wm_emit_glsl(struct brw_context *brw, struct brw_wm_compile *c)
{
struct intel_context *intel = &brw->intel;
#define MAX_IF_DEPTH 32
#define MAX_LOOP_DEPTH 32
struct brw_instruction *if_inst[MAX_IF_DEPTH], *loop_inst[MAX_LOOP_DEPTH];
int if_depth_in_loop[MAX_LOOP_DEPTH];
GLuint i, if_depth = 0, loop_depth = 0;
struct brw_compile *p = &c->func;
struct brw_indirect stack_index = brw_indirect(0, 0);
c->out_of_regs = GL_FALSE;
if_depth_in_loop[loop_depth] = 0;
prealloc_reg(c);
brw_set_compression_control(p, BRW_COMPRESSION_NONE);
brw_MOV(p, get_addr_reg(stack_index), brw_address(c->stack));
for (i = 0; i < c->nr_fp_insns; i++) {
const struct prog_instruction *inst = &c->prog_instructions[i];
int dst_flags;
struct brw_reg args[3][4], dst[4];
int j;
int mark = mark_tmps( c );
c->cur_inst = i;
#if 0
printf("Inst %d: ", i);
_mesa_print_instruction(inst);
#endif
/* fetch any constants that this instruction needs */
if (c->fp->use_const_buffer)
fetch_constants(c, inst);
if (inst->Opcode != OPCODE_ARL) {
for (j = 0; j < 4; j++) {
if (inst->DstReg.WriteMask & (1 << j))
dst[j] = get_dst_reg(c, inst, j);
else
dst[j] = brw_null_reg();
}
}
for (j = 0; j < brw_wm_nr_args(inst->Opcode); j++)
get_argument_regs(c, inst, j, dst, args[j], WRITEMASK_XYZW);
dst_flags = inst->DstReg.WriteMask;
if (inst->SaturateMode == SATURATE_ZERO_ONE)
dst_flags |= SATURATE;
if (inst->CondUpdate)
brw_set_conditionalmod(p, BRW_CONDITIONAL_NZ);
else
brw_set_conditionalmod(p, BRW_CONDITIONAL_NONE);
switch (inst->Opcode) {
case WM_PIXELXY:
emit_pixel_xy(c, dst, dst_flags);
break;
case WM_DELTAXY:
emit_delta_xy(p, dst, dst_flags, args[0]);
break;
case WM_PIXELW:
emit_pixel_w(c, dst, dst_flags, args[0], args[1]);
break;
case WM_LINTERP:
emit_linterp(p, dst, dst_flags, args[0], args[1]);
break;
case WM_PINTERP:
emit_pinterp(p, dst, dst_flags, args[0], args[1], args[2]);
break;
case WM_CINTERP:
emit_cinterp(p, dst, dst_flags, args[0]);
break;
case WM_WPOSXY:
emit_wpos_xy(c, dst, dst_flags, args[0]);
break;
case WM_FB_WRITE:
emit_fb_write(c, args[0], args[1], args[2],
INST_AUX_GET_TARGET(inst->Aux),
inst->Aux & INST_AUX_EOT);
break;
case WM_FRONTFACING:
emit_frontfacing(p, dst, dst_flags);
break;
case OPCODE_ADD:
emit_alu2(p, brw_ADD, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_ARL:
emit_arl(c, inst);
break;
case OPCODE_FRC:
emit_alu1(p, brw_FRC, dst, dst_flags, args[0]);
break;
case OPCODE_FLR:
emit_alu1(p, brw_RNDD, dst, dst_flags, args[0]);
break;
case OPCODE_LRP:
emit_lrp(p, dst, dst_flags, args[0], args[1], args[2]);
break;
case OPCODE_TRUNC:
emit_alu1(p, brw_RNDZ, dst, dst_flags, args[0]);
break;
case OPCODE_MOV:
case OPCODE_SWZ:
emit_alu1(p, brw_MOV, dst, dst_flags, args[0]);
break;
case OPCODE_DP2:
emit_dp2(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_DP3:
emit_dp3(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_DP4:
emit_dp4(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_XPD:
emit_xpd(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_DPH:
emit_dph(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_RCP:
emit_math1(c, BRW_MATH_FUNCTION_INV, dst, dst_flags, args[0]);
break;
case OPCODE_RSQ:
emit_math1(c, BRW_MATH_FUNCTION_RSQ, dst, dst_flags, args[0]);
break;
case OPCODE_SIN:
emit_math1(c, BRW_MATH_FUNCTION_SIN, dst, dst_flags, args[0]);
break;
case OPCODE_COS:
emit_math1(c, BRW_MATH_FUNCTION_COS, dst, dst_flags, args[0]);
break;
case OPCODE_EX2:
emit_math1(c, BRW_MATH_FUNCTION_EXP, dst, dst_flags, args[0]);
break;
case OPCODE_LG2:
emit_math1(c, BRW_MATH_FUNCTION_LOG, dst, dst_flags, args[0]);
break;
case OPCODE_CMP:
emit_cmp(p, dst, dst_flags, args[0], args[1], args[2]);
break;
case OPCODE_MIN:
emit_min(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_MAX:
emit_max(p, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_DDX:
case OPCODE_DDY:
emit_ddxy(p, dst, dst_flags, (inst->Opcode == OPCODE_DDX),
args[0]);
break;
case OPCODE_SLT:
emit_sop(p, dst, dst_flags,
BRW_CONDITIONAL_L, args[0], args[1]);
break;
case OPCODE_SLE:
emit_sop(p, dst, dst_flags,
BRW_CONDITIONAL_LE, args[0], args[1]);
break;
case OPCODE_SGT:
emit_sop(p, dst, dst_flags,
BRW_CONDITIONAL_G, args[0], args[1]);
break;
case OPCODE_SGE:
emit_sop(p, dst, dst_flags,
BRW_CONDITIONAL_GE, args[0], args[1]);
break;
case OPCODE_SEQ:
emit_sop(p, dst, dst_flags,
BRW_CONDITIONAL_EQ, args[0], args[1]);
break;
case OPCODE_SNE:
emit_sop(p, dst, dst_flags,
BRW_CONDITIONAL_NEQ, args[0], args[1]);
break;
case OPCODE_SSG:
emit_sign(p, dst, dst_flags, args[0]);
break;
case OPCODE_MUL:
emit_alu2(p, brw_MUL, dst, dst_flags, args[0], args[1]);
break;
case OPCODE_POW:
emit_math2(c, BRW_MATH_FUNCTION_POW,
dst, dst_flags, args[0], args[1]);
break;
case OPCODE_MAD:
emit_mad(p, dst, dst_flags, args[0], args[1], args[2]);
break;
case OPCODE_TEX:
emit_tex(c, dst, dst_flags, args[0],
get_reg(c, PROGRAM_PAYLOAD, PAYLOAD_DEPTH,
0, 1, 0, 0),
inst->TexSrcTarget,
inst->TexSrcUnit,
(c->key.shadowtex_mask & (1 << inst->TexSrcUnit)) != 0);
break;
case OPCODE_TXB:
emit_txb(c, dst, dst_flags, args[0],
get_reg(c, PROGRAM_PAYLOAD, PAYLOAD_DEPTH,
0, 1, 0, 0),
inst->TexSrcTarget,
c->fp->program.Base.SamplerUnits[inst->TexSrcUnit]);
break;
case OPCODE_KIL_NV:
emit_kil(c);
break;
case OPCODE_IF:
assert(if_depth < MAX_IF_DEPTH);
if_inst[if_depth++] = brw_IF(p, BRW_EXECUTE_8);
if_depth_in_loop[loop_depth]++;
break;
case OPCODE_ELSE:
assert(if_depth > 0);
if_inst[if_depth-1] = brw_ELSE(p, if_inst[if_depth-1]);
break;
case OPCODE_ENDIF:
assert(if_depth > 0);
brw_ENDIF(p, if_inst[--if_depth]);
if_depth_in_loop[loop_depth]--;
break;
case OPCODE_BGNSUB:
brw_save_label(p, inst->Comment, p->nr_insn);
break;
case OPCODE_ENDSUB:
/* no-op */
break;
case OPCODE_CAL:
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_set_access_mode(p, BRW_ALIGN_1);
brw_ADD(p, deref_1ud(stack_index, 0), brw_ip_reg(), brw_imm_d(3*16));
brw_set_access_mode(p, BRW_ALIGN_16);
brw_ADD(p, get_addr_reg(stack_index),
get_addr_reg(stack_index), brw_imm_d(4));
brw_save_call(&c->func, inst->Comment, p->nr_insn);
brw_ADD(p, brw_ip_reg(), brw_ip_reg(), brw_imm_d(1*16));
brw_pop_insn_state(p);
break;
case OPCODE_RET:
brw_push_insn_state(p);
brw_set_mask_control(p, BRW_MASK_DISABLE);
brw_ADD(p, get_addr_reg(stack_index),
get_addr_reg(stack_index), brw_imm_d(-4));
brw_set_access_mode(p, BRW_ALIGN_1);
brw_MOV(p, brw_ip_reg(), deref_1ud(stack_index, 0));
brw_set_access_mode(p, BRW_ALIGN_16);
brw_pop_insn_state(p);
break;
case OPCODE_BGNLOOP:
/* XXX may need to invalidate the current_constant regs */
loop_inst[loop_depth++] = brw_DO(p, BRW_EXECUTE_8);
if_depth_in_loop[loop_depth] = 0;
break;
case OPCODE_BRK:
brw_BREAK(p, if_depth_in_loop[loop_depth]);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case OPCODE_CONT:
brw_CONT(p, if_depth_in_loop[loop_depth]);
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
break;
case OPCODE_ENDLOOP:
{
struct brw_instruction *inst0, *inst1;
GLuint br = 1;
if (intel->gen == 5)
br = 2;
assert(loop_depth > 0);
loop_depth--;
inst0 = inst1 = brw_WHILE(p, loop_inst[loop_depth]);
/* patch all the BREAK/CONT instructions from last BGNLOOP */
while (inst0 > loop_inst[loop_depth]) {
inst0--;
if (inst0->header.opcode == BRW_OPCODE_BREAK &&
inst0->bits3.if_else.jump_count == 0) {
inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
}
else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
inst0->bits3.if_else.jump_count == 0) {
inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
}
}
}
break;
default:
printf("unsupported opcode %d (%s) in fragment shader\n",
inst->Opcode, inst->Opcode < MAX_OPCODE ?
_mesa_opcode_string(inst->Opcode) : "unknown");
}
/* Release temporaries containing any unaliased source regs. */
release_tmps( c, mark );
if (inst->CondUpdate)
brw_set_predicate_control(p, BRW_PREDICATE_NORMAL);
else
brw_set_predicate_control(p, BRW_PREDICATE_NONE);
}
post_wm_emit(c);
if (INTEL_DEBUG & DEBUG_WM) {
printf("wm-native:\n");
for (i = 0; i < p->nr_insn; i++)
brw_disasm(stdout, &p->store[i], intel->gen);
printf("\n");
}
}
/**
* Do GPU code generation for shaders that use GLSL features such as
* flow control. Other shaders will be compiled with the
*/
void brw_wm_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
{
if (INTEL_DEBUG & DEBUG_WM) {
printf("brw_wm_glsl_emit:\n");
}
/* initial instruction translation/simplification */
brw_wm_pass_fp(c);
/* actual code generation */
brw_wm_emit_glsl(brw, c);
if (INTEL_DEBUG & DEBUG_WM) {
brw_wm_print_program(c, "brw_wm_glsl_emit done");
}
c->prog_data.total_grf = num_grf_used(c);
c->prog_data.total_scratch = 0;
}
|