1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
#*************************************************************************
# Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
# All Rights Reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# TUNGSTEN GRAPHICS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
# OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#*************************************************************************
import sys, os
import APIspecutil as apiutil
# These dictionary entries are used for automatic conversion.
# The string will be used as a format string with the conversion
# variable.
Converters = {
'GLfloat': {
'GLdouble': "(GLdouble) (%s)",
'GLfixed' : "(GLint) (%s * 65536)",
},
'GLfixed': {
'GLfloat': "(GLfloat) (%s / 65536.0f)",
'GLdouble': "(GLdouble) (%s / 65536.0)",
},
'GLdouble': {
'GLfloat': "(GLfloat) (%s)",
'GLfixed': "(GLfixed) (%s * 65536)",
},
'GLclampf': {
'GLclampd': "(GLclampd) (%s)",
'GLclampx': "(GLclampx) (%s * 65536)",
},
'GLclampx': {
'GLclampf': "(GLclampf) (%s / 65536.0f)",
'GLclampd': "(GLclampd) (%s / 65536.0)",
},
'GLubyte': {
'GLfloat': "(GLfloat) (%s / 255.0f)",
},
}
def GetBaseType(type):
typeTokens = type.split(' ')
baseType = None
typeModifiers = []
for t in typeTokens:
if t in ['const', '*']:
typeModifiers.append(t)
else:
baseType = t
return (baseType, typeModifiers)
def ConvertValue(value, fromType, toType):
"""Returns a string that represents the given parameter string,
type-converted if necessary."""
if not Converters.has_key(fromType):
print >> sys.stderr, "No base converter for type '%s' found. Ignoring." % fromType
return value
if not Converters[fromType].has_key(toType):
print >> sys.stderr, "No converter found for type '%s' to type '%s'. Ignoring." % (fromType, toType)
return value
# This part is simple. Return the proper conversion.
conversionString = Converters[fromType][toType]
return conversionString % value
def GetLoopSizeExpression(funcName, paramName, paramMaxVecSize):
# The VariantArrays() list will have all the information (for all
# parameters) on how to calculate variant array sizes.
variantArrays = apiutil.VariantArrays(funcName)
defaultSize = paramMaxVecSize
loopSizeExpression = ''
# There can be many different entries in the variantArrays for the
# same parameter. We have to look at all of them and pick out the
# ones of interest.
for (variantName, variantSize, controllingParam, controllingValues) in variantArrays:
if paramName == variantName:
# This variant specification applies to us. It may be of
# the form "param size default", meaning that the value should
# replace the default size, or it may be
# "param size controlParam value...", in which case the size should
# be used if the controlParam has any one of the given values.
if len(controllingValues) == 0:
defaultSize = variantSize
else:
# Create a compound conditional that expresses
# all the possible values in the list
conditional = ''
for value in controllingValues:
if len(conditional) > 0:
conditional = conditional + " || "
conditional = conditional + "%s == %s" % (controllingParam, value)
# Add the possibly compound conditional and
# the associated vector size to the
# loop control expression
loopSizeExpression = loopSizeExpression + "(%s) ? %s : " % (conditional, variantSize)
# end if the name matches
# end for the list of all variant array declarations
# Return the expression that returns the actual size of the
# array. Note that 'loopSizeExpression' will already have a
# trailing ": " if it is nonempty.
if len(loopSizeExpression) > 0:
return "(%s%s)" % (loopSizeExpression, defaultSize)
else:
return "%s" % defaultSize
FormatStrings = {
'GLenum' : '0x%x',
'GLfloat' : '%f',
'GLint' : '%d',
'GLbitfield' : '0x%x',
}
def GetFormatString(type):
if FormatStrings.has_key(type):
return FormatStrings[type]
else:
return None
######################################################################
# Version-specific values to be used in the main script
# header: which header file to include
# api: what text specifies an API-level function
VersionSpecificValues = {
'GLES1.1' : {
'description' : 'GLES1.1 functions',
'header' : 'GLES/gl.h',
'extheader' : 'GLES/glext.h',
},
'GLES2.0': {
'description' : 'GLES2.0 functions',
'header' : 'GLES2/gl2.h',
'extheader' : 'GLES2/gl2ext.h',
}
}
######################################################################
# Main code for the script begins here.
# Get the name of the program (without the directory part) for use in
# error messages.
program = os.path.basename(sys.argv[0])
# Set default values
verbose = 0
functionList = "APIspec.xml"
version = "GLES1.1"
# Allow for command-line switches
import getopt, time
options = "hvV:S:"
try:
optlist, args = getopt.getopt(sys.argv[1:], options)
except getopt.GetoptError, message:
sys.stderr.write("%s: %s. Use -h for help.\n" % (program, message))
sys.exit(1)
for option, optarg in optlist:
if option == "-h":
sys.stderr.write("Usage: %s [-%s]\n" % (program, options))
sys.stderr.write("Parse an API specification file and generate wrapper functions for a given GLES version\n")
sys.stderr.write("-h gives help\n")
sys.stderr.write("-v is verbose\n")
sys.stderr.write("-V specifies GLES version to generate [%s]:\n" % version)
for key in VersionSpecificValues.keys():
sys.stderr.write(" %s - %s\n" % (key, VersionSpecificValues[key]['description']))
sys.stderr.write("-S specifies API specification file to use [%s]\n" % functionList)
sys.exit(1)
elif option == "-v":
verbose += 1
elif option == "-V":
version = optarg
elif option == "-S":
functionList = optarg
# Beyond switches, we support no further command-line arguments
if len(args) > 0:
sys.stderr.write("%s: only switch arguments are supported - use -h for help\n" % program)
sys.exit(1)
# If we don't have a valid version, abort.
if not VersionSpecificValues.has_key(version):
sys.stderr.write("%s: version '%s' is not valid - use -h for help\n" % (program, version))
sys.exit(1)
# Grab the version-specific items we need to use
versionHeader = VersionSpecificValues[version]['header']
versionExtHeader = VersionSpecificValues[version]['extheader']
# If we get to here, we're good to go. The "version" parameter
# directs GetDispatchedFunctions to only allow functions from
# that "category" (version in our parlance). This allows
# functions with different declarations in different categories
# to exist (glTexImage2D, for example, is different between
# GLES1 and GLES2).
keys = apiutil.GetAllFunctions(functionList, version)
allSpecials = apiutil.AllSpecials()
print """/* DO NOT EDIT *************************************************
* THIS FILE AUTOMATICALLY GENERATED BY THE %s SCRIPT
* API specification file: %s
* GLES version: %s
* date: %s
*/
""" % (program, functionList, version, time.strftime("%Y-%m-%d %H:%M:%S"))
# The headers we choose are version-specific.
print """
#include "%s"
#include "%s"
""" % (versionHeader, versionExtHeader)
# Everyone needs these types.
print """
/* These types are needed for the Mesa veneer, but are not defined in
* the standard GLES headers.
*/
typedef double GLdouble;
typedef double GLclampd;
/* This type is normally in glext.h, but needed here */
typedef char GLchar;
/* Mesa error handling requires these */
extern void *_mesa_get_current_context(void);
extern void _mesa_error(void *ctx, GLenum error, const char *fmtString, ... );
#include "main/compiler.h"
#include "main/api_exec.h"
#include "glapi/dispatch.h"
typedef void (*_glapi_proc)(void); /* generic function pointer */
"""
# All variant-length arrays in the GLES API are controlled by some
# selector parameter. Almost all of those are constant length based
# on the selector parameter (e.g., in glFogfv(), if the "pname"
# parameter is GL_FOG_COLOR, the "params" array is considered to be
# 4 floats long; for any other value of "pname", the "params' array
# is considered to be 1 float long.
#
# There are a very few instances where the selector parameter chooses
# a runtime-determined value:
# glGetIntegerv(GL_COMPRESSED_TEXTURE_FORMATS)
# glGetIntegerv(GL_SHADER_BINARY_FORMATS)
# plus the glGetBooleanv, glGetFloatv, glGetFixedv counterparts.
#
# The number of formats in both cases is not a constant, but is a
# runtime-determined value (based on the return value of
# glGetIntegerv(GL_NUM_COMPRESSED_TEXTURE_FORMATS) or
# glGetIntegerv(GL_NUM_SHADER_BINARY_FORMATS).
#
# Rather than hard-code some value (and risk memory errors when we
# overshoot arrays), in these cases we'll use a constant expresssion
# (e.g. _get_size(GL_NUM_COMPRESSED_TEXTURE_FORMATS)) to get the
# value of the variant array. Note, though, that in these cases the
# "vector" parameter should be set to some size large enough to hold
# all values (and must be set for GLfixed-based conversions, which
# need it to define an auxiliary array size).
#
# Here's the function itself. Although we only need a couple of values,
# we'll make it general.
print """
extern void GLAPIENTRY _mesa_GetIntegerv(GLenum, GLint *);
static INLINE unsigned int _get_size(GLenum pname)
{
/* In case of error, make sure the value returned is 0. */
GLint value = 0;
_mesa_GetIntegerv(pname, &value);
return (unsigned int) value;
}
"""
# Finally we get to the all-important functions
print """/*************************************************************
* Generated functions begin here
*/
"""
for funcName in keys:
if verbose > 0: sys.stderr.write("%s: processing function %s\n" % (program, funcName))
# start figuring out what this function will look like.
returnType = apiutil.ReturnType(funcName)
props = apiutil.Properties(funcName)
params = apiutil.Parameters(funcName)
declarationString = apiutil.MakeDeclarationString(params)
# In case of error, a function may have to return. Make
# sure we have valid return values in this case.
if returnType == "void":
errorReturn = "return"
elif returnType == "GLboolean":
errorReturn = "return GL_FALSE"
else:
errorReturn = "return (%s) 0" % returnType
# These are the output of this large calculation block.
# passthroughDeclarationString: a typed set of parameters that
# will be used to create the "extern" reference for the
# underlying Mesa or support function. Note that as generated
# these have an extra ", " at the beginning, which will be
# removed before use.
#
# passthroughDeclarationString: an untyped list of parameters
# that will be used to call the underlying Mesa or support
# function (including references to converted parameters).
# This will also be generated with an extra ", " at the
# beginning, which will be removed before use.
#
# variables: C code to create any local variables determined to
# be necessary.
# conversionCodeOutgoing: C code to convert application parameters
# to a necessary type before calling the underlying support code.
# May be empty if no conversion is required.
# conversionCodeIncoming: C code to do the converse: convert
# values returned by underlying Mesa code to the types needed
# by the application.
# Note that *either* the conversionCodeIncoming will be used (for
# generated query functions), *or* the conversionCodeOutgoing will
# be used (for generated non-query functions), never both.
passthroughFuncName = ""
passthroughDeclarationString = ""
passthroughCallString = ""
variables = []
conversionCodeOutgoing = []
conversionCodeIncoming = []
switchCode = []
# Calculate the name of the underlying support function to call.
# By default, the passthrough function is named _mesa_<funcName>.
# We're allowed to override the prefix and/or the function name
# for each function record, though. The "ConversionFunction"
# utility is poorly named, BTW...
aliasprefix = apiutil.AliasPrefix(funcName)
alias = apiutil.ConversionFunction(funcName)
if not alias:
# There may still be a Mesa alias for the function
if apiutil.Alias(funcName):
passthroughFuncName = "%s%s" % (aliasprefix, apiutil.Alias(funcName))
else:
passthroughFuncName = "%s%s" % (aliasprefix, funcName)
else: # a specific alias is provided
passthroughFuncName = "%s%s" % (aliasprefix, alias)
# Look at every parameter: each one may have only specific
# allowed values, or dependent parameters to check, or
# variant-sized vector arrays to calculate
for (paramName, paramType, paramMaxVecSize, paramConvertToType, paramValidValues, paramValueConversion) in params:
# We'll need this below if we're doing conversions
(paramBaseType, paramTypeModifiers) = GetBaseType(paramType)
# Conversion management.
# We'll handle three cases, easiest to hardest: a parameter
# that doesn't require conversion, a scalar parameter that
# requires conversion, and a vector parameter that requires
# conversion.
if paramConvertToType == None:
# Unconverted parameters are easy, whether they're vector
# or scalar - just add them to the call list. No conversions
# or anything to worry about.
passthroughDeclarationString += ", %s %s" % (paramType, paramName)
passthroughCallString += ", %s" % paramName
elif paramMaxVecSize == 0: # a scalar parameter that needs conversion
# A scalar to hold a converted parameter
variables.append(" %s converted_%s;" % (paramConvertToType, paramName))
# Outgoing conversion depends on whether we have to conditionally
# perform value conversion.
if paramValueConversion == "none":
conversionCodeOutgoing.append(" converted_%s = (%s) %s;" % (paramName, paramConvertToType, paramName))
elif paramValueConversion == "some":
# We'll need a conditional variable to keep track of
# whether we're converting values or not.
if (" int convert_%s_value = 1;" % paramName) not in variables:
variables.append(" int convert_%s_value = 1;" % paramName)
# Write code based on that conditional.
conversionCodeOutgoing.append(" if (convert_%s_value) {" % paramName)
conversionCodeOutgoing.append(" converted_%s = %s;" % (paramName, ConvertValue(paramName, paramBaseType, paramConvertToType)))
conversionCodeOutgoing.append(" } else {")
conversionCodeOutgoing.append(" converted_%s = (%s) %s;" % (paramName, paramConvertToType, paramName))
conversionCodeOutgoing.append(" }")
else: # paramValueConversion == "all"
conversionCodeOutgoing.append(" converted_%s = %s;" % (paramName, ConvertValue(paramName, paramBaseType, paramConvertToType)))
# Note that there can be no incoming conversion for a
# scalar parameter; changing the scalar will only change
# the local value, and won't ultimately change anything
# that passes back to the application.
# Call strings. The unusual " ".join() call will join the
# array of parameter modifiers with spaces as separators.
passthroughDeclarationString += ", %s %s %s" % (paramConvertToType, " ".join(paramTypeModifiers), paramName)
passthroughCallString += ", converted_%s" % paramName
else: # a vector parameter that needs conversion
# We'll need an index variable for conversions
if " register unsigned int i;" not in variables:
variables.append(" register unsigned int i;")
# This variable will hold the (possibly variant) size of
# this array needing conversion. By default, we'll set
# it to the maximal size (which is correct for functions
# with a constant-sized vector parameter); for true
# variant arrays, we'll modify it with other code.
variables.append(" unsigned int n_%s = %d;" % (paramName, paramMaxVecSize))
# This array will hold the actual converted values.
variables.append(" %s converted_%s[%d];" % (paramConvertToType, paramName, paramMaxVecSize))
# Again, we choose the conversion code based on whether we
# have to always convert values, never convert values, or
# conditionally convert values.
if paramValueConversion == "none":
conversionCodeOutgoing.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeOutgoing.append(" converted_%s[i] = (%s) %s[i];" % (paramName, paramConvertToType, paramName))
conversionCodeOutgoing.append(" }")
elif paramValueConversion == "some":
# We'll need a conditional variable to keep track of
# whether we're converting values or not.
if (" int convert_%s_value = 1;" % paramName) not in variables:
variables.append(" int convert_%s_value = 1;" % paramName)
# Write code based on that conditional.
conversionCodeOutgoing.append(" if (convert_%s_value) {" % paramName)
conversionCodeOutgoing.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeOutgoing.append(" converted_%s[i] = %s;" % (paramName, ConvertValue("%s[i]" % paramName, paramBaseType, paramConvertToType)))
conversionCodeOutgoing.append(" }")
conversionCodeOutgoing.append(" } else {")
conversionCodeOutgoing.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeOutgoing.append(" converted_%s[i] = (%s) %s[i];" % (paramName, paramConvertToType, paramName))
conversionCodeOutgoing.append(" }")
conversionCodeOutgoing.append(" }")
else: # paramValueConversion == "all"
conversionCodeOutgoing.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeOutgoing.append(" converted_%s[i] = %s;" % (paramName, ConvertValue("%s[i]" % paramName, paramBaseType, paramConvertToType)))
conversionCodeOutgoing.append(" }")
# If instead we need an incoming conversion (i.e. results
# from Mesa have to be converted before handing back
# to the application), this is it. Fortunately, we don't
# have to worry about conditional value conversion - the
# functions that do (e.g. glGetFixedv()) are handled
# specially, outside this code generation.
#
# Whether we use incoming conversion or outgoing conversion
# is determined later - we only ever use one or the other.
if paramValueConversion == "none":
conversionCodeIncoming.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeIncoming.append(" %s[i] = (%s) converted_%s[i];" % (paramName, paramConvertToType, paramName))
conversionCodeIncoming.append(" }")
elif paramValueConversion == "some":
# We'll need a conditional variable to keep track of
# whether we're converting values or not.
if (" int convert_%s_value = 1;" % paramName) not in variables:
variables.append(" int convert_%s_value = 1;" % paramName)
# Write code based on that conditional.
conversionCodeIncoming.append(" if (convert_%s_value) {" % paramName)
conversionCodeIncoming.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeIncoming.append(" %s[i] = %s;" % (paramName, ConvertValue("converted_%s[i]" % paramName, paramConvertToType, paramBaseType)))
conversionCodeIncoming.append(" }")
conversionCodeIncoming.append(" } else {")
conversionCodeIncoming.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeIncoming.append(" %s[i] = (%s) converted_%s[i];" % (paramName, paramBaseType, paramName))
conversionCodeIncoming.append(" }")
conversionCodeIncoming.append(" }")
else: # paramValueConversion == "all"
conversionCodeIncoming.append(" for (i = 0; i < n_%s; i++) {" % paramName)
conversionCodeIncoming.append(" %s[i] = %s;" % (paramName, ConvertValue("converted_%s[i]" % paramName, paramConvertToType, paramBaseType)))
conversionCodeIncoming.append(" }")
# Call strings. The unusual " ".join() call will join the
# array of parameter modifiers with spaces as separators.
passthroughDeclarationString += ", %s %s %s" % (paramConvertToType, " ".join(paramTypeModifiers), paramName)
passthroughCallString += ", converted_%s" % paramName
# endif conversion management
# Parameter checking. If the parameter has a specific list of
# valid values, we have to make sure that the passed-in values
# match these, or we make an error.
if len(paramValidValues) > 0:
# We're about to make a big switch statement with an
# error at the end. By default, the error is GL_INVALID_ENUM,
# unless we find a "case" statement in the middle with a
# non-GLenum value.
errorDefaultCase = "GL_INVALID_ENUM"
# This parameter has specific valid values. Make a big
# switch statement to handle it. Note that the original
# parameters are always what is checked, not the
# converted parameters.
switchCode.append(" switch(%s) {" % paramName)
for valueIndex in range(len(paramValidValues)):
(paramValue, dependentVecSize, dependentParamName, dependentValidValues, errorCode, valueConvert) = paramValidValues[valueIndex]
# We're going to need information on the dependent param
# as well.
if dependentParamName:
depParamIndex = apiutil.FindParamIndex(params, dependentParamName)
if depParamIndex == None:
sys.stderr.write("%s: can't find dependent param '%s' for function '%s'\n" % (program, dependentParamName, funcName))
(depParamName, depParamType, depParamMaxVecSize, depParamConvertToType, depParamValidValues, depParamValueConversion) = params[depParamIndex]
else:
(depParamName, depParamType, depParamMaxVecSize, depParamConvertToType, depParamValidValues, depParamValueConversion) = (None, None, None, None, [], None)
# This is a sneaky trick. It's valid syntax for a parameter
# that is *not* going to be converted to be declared
# with a dependent vector size; but in this case, the
# dependent vector size is unused and unnecessary.
# So check for this and ignore the dependent vector size
# if the parameter is not going to be converted.
if depParamConvertToType:
usedDependentVecSize = dependentVecSize
else:
usedDependentVecSize = None
# We'll peek ahead at the next parameter, to see whether
# we can combine cases
if valueIndex + 1 < len(paramValidValues) :
(nextParamValue, nextDependentVecSize, nextDependentParamName, nextDependentValidValues, nextErrorCode, nextValueConvert) = paramValidValues[valueIndex + 1]
if depParamConvertToType:
usedNextDependentVecSize = nextDependentVecSize
else:
usedNextDependentVecSize = None
# Create a case for this value. As a mnemonic,
# if we have a dependent vector size that we're ignoring,
# add it as a comment.
if usedDependentVecSize == None and dependentVecSize != None:
switchCode.append(" case %s: /* size %s */" % (paramValue, dependentVecSize))
else:
switchCode.append(" case %s:" % paramValue)
# If this is not a GLenum case, then switch our error
# if no value is matched to be GL_INVALID_VALUE instead
# of GL_INVALID_ENUM. (Yes, this does get confused
# if there are both values and GLenums in the same
# switch statement, which shouldn't happen.)
if paramValue[0:3] != "GL_":
errorDefaultCase = "GL_INVALID_VALUE"
# If all the remaining parameters are identical to the
# next set, then we're done - we'll just create the
# official code on the next pass through, and the two
# cases will share the code.
if valueIndex + 1 < len(paramValidValues) and usedDependentVecSize == usedNextDependentVecSize and dependentParamName == nextDependentParamName and dependentValidValues == nextDependentValidValues and errorCode == nextErrorCode and valueConvert == nextValueConvert:
continue
# Otherwise, we'll have to generate code for this case.
# Start off with a check: if there is a dependent parameter,
# and a list of valid values for that parameter, we need
# to generate an error if something other than one
# of those values is passed.
if len(dependentValidValues) > 0:
conditional=""
# If the parameter being checked is actually an array,
# check only its first element.
if depParamMaxVecSize == 0:
valueToCheck = dependentParamName
else:
valueToCheck = "%s[0]" % dependentParamName
for v in dependentValidValues:
conditional += " && %s != %s" % (valueToCheck, v)
switchCode.append(" if (%s) {" % conditional[4:])
if errorCode == None:
errorCode = "GL_INVALID_ENUM"
switchCode.append(' _mesa_error(_mesa_get_current_context(), %s, "gl%s(%s=0x%s)", %s);' % (errorCode, funcName, paramName, "%x", paramName))
switchCode.append(" %s;" % errorReturn)
switchCode.append(" }")
# endif there are dependent valid values
# The dependent parameter may require conditional
# value conversion. If it does, and we don't want
# to convert values, we'll have to generate code for that
if depParamValueConversion == "some" and valueConvert == "noconvert":
switchCode.append(" convert_%s_value = 0;" % dependentParamName)
# If there's a dependent vector size for this parameter
# that we're actually going to use (i.e. we need conversion),
# mark it.
if usedDependentVecSize:
switchCode.append(" n_%s = %s;" % (dependentParamName, dependentVecSize))
# In all cases, break out of the switch if any valid
# value is found.
switchCode.append(" break;")
# Need a default case to catch all the other, invalid
# parameter values. These will all generate errors.
switchCode.append(" default:")
if errorCode == None:
errorCode = "GL_INVALID_ENUM"
formatString = GetFormatString(paramType)
if formatString == None:
switchCode.append(' _mesa_error(_mesa_get_current_context(), %s, "gl%s(%s)");' % (errorCode, funcName, paramName))
else:
switchCode.append(' _mesa_error(_mesa_get_current_context(), %s, "gl%s(%s=%s)", %s);' % (errorCode, funcName, paramName, formatString, paramName))
switchCode.append(" %s;" % errorReturn)
# End of our switch code.
switchCode.append(" }")
# endfor every recognized parameter value
# endfor every param
# Here, the passthroughDeclarationString and passthroughCallString
# are complete; remove the extra ", " at the front of each.
passthroughDeclarationString = passthroughDeclarationString[2:]
passthroughCallString = passthroughCallString[2:]
# The Mesa functions are scattered across all the Mesa
# header files. The easiest way to manage declarations
# is to create them ourselves.
if funcName not in allSpecials:
print "extern %s GLAPIENTRY %s(%s);" % (returnType, passthroughFuncName, passthroughDeclarationString)
# A function may be a core function (i.e. it exists in
# the core specification), a core addition (extension
# functions added officially to the core), a required
# extension (usually an extension for an earlier version
# that has been officially adopted), or an optional extension.
#
# Core functions have a simple category (e.g. "GLES1.1");
# we generate only a simple callback for them.
#
# Core additions have two category listings, one simple
# and one compound (e.g. ["GLES1.1", "GLES1.1:OES_fixed_point"]).
# We generate the core function, and also an extension function.
#
# Required extensions and implemented optional extensions
# have a single compound category "GLES1.1:OES_point_size_array".
# For these we generate just the extension function.
for categorySpec in apiutil.Categories(funcName):
compoundCategory = categorySpec.split(":")
# This category isn't for us, if the base category doesn't match
# our version
if compoundCategory[0] != version:
continue
# Otherwise, determine if we're writing code for a core
# function (no suffix) or an extension function.
if len(compoundCategory) == 1:
# This is a core function
extensionName = None
fullFuncName = "_es_" + funcName
else:
# This is an extension function. We'll need to append
# the extension suffix.
extensionName = compoundCategory[1]
extensionSuffix = extensionName.split("_")[0]
fullFuncName = "_es_" + funcName + extensionSuffix
# Now the generated function. The text used to mark an API-level
# function, oddly, is version-specific.
if extensionName:
print "/* Extension %s */" % extensionName
if funcName in allSpecials:
print "/* this function is special and is defined elsewhere */"
print "extern %s %s(%s);" % (returnType, fullFuncName, declarationString)
print
continue
print "static %s %s(%s)" % (returnType, fullFuncName, declarationString)
print "{"
# Start printing our code pieces. Start with any local
# variables we need. This unusual syntax joins the
# lines in the variables[] array with the "\n" separator.
if len(variables) > 0:
print "\n".join(variables) + "\n"
# If there's any sort of parameter checking or variable
# array sizing, the switch code will contain it.
if len(switchCode) > 0:
print "\n".join(switchCode) + "\n"
# In the case of an outgoing conversion (i.e. parameters must
# be converted before calling the underlying Mesa function),
# use the appropriate code.
if "get" not in props and len(conversionCodeOutgoing) > 0:
print "\n".join(conversionCodeOutgoing) + "\n"
# Call the Mesa function. Note that there are very few functions
# that return a value (i.e. returnType is not "void"), and that
# none of them require incoming translation; so we're safe
# to generate code that directly returns in those cases,
# even though it's not completely independent.
if returnType == "void":
print " %s(%s);" % (passthroughFuncName, passthroughCallString)
else:
print " return %s(%s);" % (passthroughFuncName, passthroughCallString)
# If the function is one that returns values (i.e. "get" in props),
# it might return values of a different type than we need, that
# require conversion before passing back to the application.
if "get" in props and len(conversionCodeIncoming) > 0:
print "\n".join(conversionCodeIncoming)
# All done.
print "}"
print
# end for each category provided for a function
# end for each function
print "void"
print "_mesa_init_exec_table(struct _glapi_table *exec)"
print "{"
for func in keys:
for spec in apiutil.Categories(func):
ext = spec.split(":")
# version does not match
if ext.pop(0) != version:
continue
entry = func
if ext:
suffix = ext[0].split("_")[0]
entry += suffix
print " SET_%s(exec, _es_%s);" % (entry, entry)
print "}"
|