summaryrefslogtreecommitdiff
path: root/src/mesa/main/macros.h
blob: 4370a580751f922f02346aa21c8d824af29e50e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
/**
 * \file macros.h
 * A collection of useful macros.
 */

/*
 * Mesa 3-D graphics library
 * Version:  4.0.3
 *
 * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */


#ifndef MACROS_H
#define MACROS_H

#include "imports.h"


/**
 * \name Integer / float conversion for colors, normals, etc.
 */
/*@{*/

/** Convert GLubyte in [0,255] to GLfloat in [0.0,1.0] */
extern GLfloat _mesa_ubyte_to_float_color_tab[256];
#define UBYTE_TO_FLOAT(u) _mesa_ubyte_to_float_color_tab[(unsigned int)(u)]

/** Convert GLfloat in [0.0,1.0] to GLubyte in [0,255] */
#define FLOAT_TO_UBYTE(X)   ((GLubyte) (GLint) ((X) * 255.0F))


/** Convert GLbyte in [-128,127] to GLfloat in [-1.0,1.0] */
#define BYTE_TO_FLOAT(B)    ((2.0F * (B) + 1.0F) * (1.0F/255.0F))

/** Convert GLfloat in [-1.0,1.0] to GLbyte in [-128,127] */
#define FLOAT_TO_BYTE(X)    ( (((GLint) (255.0F * (X))) - 1) / 2 )


/** Convert GLushort in [0,65536] to GLfloat in [0.0,1.0] */
#define USHORT_TO_FLOAT(S)  ((GLfloat) (S) * (1.0F / 65535.0F))

/** Convert GLfloat in [0.0,1.0] to GLushort in [0,65536] */
#define FLOAT_TO_USHORT(X)  ((GLushort) (GLint) ((X) * 65535.0F))

/** Convert GLshort in [-32768,32767] to GLfloat in [-1.0,1.0] */
#define SHORT_TO_FLOAT(S)   ((2.0F * (S) + 1.0F) * (1.0F/65535.0F))

/** Convert GLfloat in [0.0,1.0] to GLshort in [-32768,32767] */
#define FLOAT_TO_SHORT(X)   ( (((GLint) (65535.0F * (X))) - 1) / 2 )


/** Convert GLuint in [0,4294967295] to GLfloat in [0.0,1.0] */
#define UINT_TO_FLOAT(U)    ((GLfloat) (U) * (1.0F / 4294967295.0F))

/** Convert GLfloat in [0.0,1.0] to GLuint in [0,4294967295] */
#define FLOAT_TO_UINT(X)    ((GLuint) ((X) * 4294967295.0))


/** Convert GLint in [-2147483648,2147483647] to GLfloat in [-1.0,1.0] */
#define INT_TO_FLOAT(I)     ((2.0F * (I) + 1.0F) * (1.0F/4294967294.0F))

/** Convert GLfloat in [-1.0,1.0] to GLint in [-2147483648,2147483647] */
/* causes overflow:
#define FLOAT_TO_INT(X)     ( (((GLint) (4294967294.0F * (X))) - 1) / 2 )
*/
/* a close approximation: */
#define FLOAT_TO_INT(X)     ( (GLint) (2147483647.0 * (X)) )


#define BYTE_TO_UBYTE(b)   ((GLubyte) ((b) < 0 ? 0 : (GLubyte) (b)))
#define SHORT_TO_UBYTE(s)  ((GLubyte) ((s) < 0 ? 0 : (GLubyte) ((s) >> 7)))
#define USHORT_TO_UBYTE(s) ((GLubyte) ((s) >> 8))
#define INT_TO_UBYTE(i)    ((GLubyte) ((i) < 0 ? 0 : (GLubyte) ((i) >> 23)))
#define UINT_TO_UBYTE(i)   ((GLubyte) ((i) >> 24))


#define BYTE_TO_USHORT(b)  ((b) < 0 ? 0 : ((GLushort) (((b) * 65535) / 255)))
#define UBYTE_TO_USHORT(b) (((GLushort) (b) << 8) | (GLushort) (b))
#define SHORT_TO_USHORT(s) ((s) < 0 ? 0 : ((GLushort) (((s) * 65535 / 32767))))
#define INT_TO_USHORT(i)   ((i) < 0 ? 0 : ((GLushort) ((i) >> 15)))
#define UINT_TO_USHORT(i)  ((i) < 0 ? 0 : ((GLushort) ((i) >> 16)))
#define UNCLAMPED_FLOAT_TO_USHORT(us, f)  \
        us = ( (GLushort) IROUND( CLAMP((f), 0.0, 1.0) * 65535.0F) )
#define CLAMPED_FLOAT_TO_USHORT(us, f)  \
        us = ( (GLushort) IROUND( (f) * 65535.0F) )


/** Stepping a GLfloat pointer by a byte stride */
#define STRIDE_F(p, i)  (p = (GLfloat *)((GLubyte *)p + i))
/** Stepping a GLuint pointer by a byte stride */
#define STRIDE_UI(p, i)  (p = (GLuint *)((GLubyte *)p + i))
/** Stepping a GLubyte[4] pointer by a byte stride */
#define STRIDE_4UB(p, i)  (p = (GLubyte (*)[4])((GLubyte *)p + i))
/** Stepping a GLfloat[4] pointer by a byte stride */
#define STRIDE_4F(p, i)  (p = (GLfloat (*)[4])((GLubyte *)p + i))
/** Stepping a GLchan[4] pointer by a byte stride */
#define STRIDE_4CHAN(p, i)  (p = (GLchan (*)[4])((GLubyte *)p + i))
/** Stepping a GLchan pointer by a byte stride */
#define STRIDE_CHAN(p, i)  (p = (GLchan *)((GLubyte *)p + i))
/** Stepping a \p t pointer by a byte stride */
#define STRIDE_T(p, t, i)  (p = (t)((GLubyte *)p + i))


/**********************************************************************/
/** \name 4-element vector operations */
/*@{*/

/** Zero */
#define ZERO_4V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = (DST)[3] = 0

/** Test for equality */
#define TEST_EQ_4V(a,b)  ((a)[0] == (b)[0] &&   \
              (a)[1] == (b)[1] &&   \
              (a)[2] == (b)[2] &&   \
              (a)[3] == (b)[3])

/** Test for equality (unsigned bytes) */
#if defined(__i386__)
#define TEST_EQ_4UBV(DST, SRC) *((GLuint*)(DST)) == *((GLuint*)(SRC))
#else
#define TEST_EQ_4UBV(DST, SRC) TEST_EQ_4V(DST, SRC)
#endif

/** Copy a 4-element vector */
#define COPY_4V( DST, SRC )         \
do {                                \
   (DST)[0] = (SRC)[0];             \
   (DST)[1] = (SRC)[1];             \
   (DST)[2] = (SRC)[2];             \
   (DST)[3] = (SRC)[3];             \
} while (0)

/** Copy a 4-element vector with cast */
#define COPY_4V_CAST( DST, SRC, CAST )  \
do {                                    \
   (DST)[0] = (CAST)(SRC)[0];           \
   (DST)[1] = (CAST)(SRC)[1];           \
   (DST)[2] = (CAST)(SRC)[2];           \
   (DST)[3] = (CAST)(SRC)[3];           \
} while (0)

/** Copy a 4-element unsigned byte vector */
#if defined(__i386__)
#define COPY_4UBV(DST, SRC)         \
do {                                \
   *((GLuint*)(DST)) = *((GLuint*)(SRC));   \
} while (0)
#else
/* The GLuint cast might fail if DST or SRC are not dword-aligned (RISC) */
#define COPY_4UBV(DST, SRC)         \
do {                                \
   (DST)[0] = (SRC)[0];             \
   (DST)[1] = (SRC)[1];             \
   (DST)[2] = (SRC)[2];             \
   (DST)[3] = (SRC)[3];             \
} while (0)
#endif

/** Copy a 4-element float vector (Use COPY_FLOAT to avoid loading FPU) */
#define COPY_4FV( DST, SRC )        \
do {                                \
   COPY_FLOAT((DST)[0], (SRC)[0]);  \
   COPY_FLOAT((DST)[1], (SRC)[1]);  \
   COPY_FLOAT((DST)[2], (SRC)[2]);  \
   COPY_FLOAT((DST)[3], (SRC)[3]);  \
} while (0)


/** Copy \p SZ elements into a 4-element vector */
#define COPY_SZ_4V(DST, SZ, SRC)        \
do {                        \
   switch (SZ) {                \
   case 4: (DST)[3] = (SRC)[3];         \
   case 3: (DST)[2] = (SRC)[2];         \
   case 2: (DST)[1] = (SRC)[1];         \
   case 1: (DST)[0] = (SRC)[0];         \
   }                        \
} while(0)

/** Copy \p SZ elements into a homegeneous (4-element) vector, giving
 * default values to the remaining */
#define COPY_CLEAN_4V(DST, SZ, SRC)         \
do {                        \
      ASSIGN_4V( DST, 0, 0, 0, 1 );     \
      COPY_SZ_4V( DST, SZ, SRC );       \
} while (0)

/** Subtraction */
#define SUB_4V( DST, SRCA, SRCB )       \
do {                        \
      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
      (DST)[2] = (SRCA)[2] - (SRCB)[2];     \
      (DST)[3] = (SRCA)[3] - (SRCB)[3];     \
} while (0)

/** Addition */
#define ADD_4V( DST, SRCA, SRCB )       \
do {                        \
      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
      (DST)[2] = (SRCA)[2] + (SRCB)[2];     \
      (DST)[3] = (SRCA)[3] + (SRCB)[3];     \
} while (0)

/** Element-wise multiplication */
#define SCALE_4V( DST, SRCA, SRCB )     \
do {                        \
      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
      (DST)[2] = (SRCA)[2] * (SRCB)[2];     \
      (DST)[3] = (SRCA)[3] * (SRCB)[3];     \
} while (0)

/** In-place addition */
#define ACC_4V( DST, SRC )          \
do {                        \
      (DST)[0] += (SRC)[0];         \
      (DST)[1] += (SRC)[1];         \
      (DST)[2] += (SRC)[2];         \
      (DST)[3] += (SRC)[3];         \
} while (0)

/** Element-wise multiplication and addition */
#define ACC_SCALE_4V( DST, SRCA, SRCB )     \
do {                        \
      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
      (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
      (DST)[3] += (SRCA)[3] * (SRCB)[3];    \
} while (0)

/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_4V( DST, S, SRCB ) \
do {                        \
      (DST)[0] += S * (SRCB)[0];        \
      (DST)[1] += S * (SRCB)[1];        \
      (DST)[2] += S * (SRCB)[2];        \
      (DST)[3] += S * (SRCB)[3];        \
} while (0)

/** Scalar multiplication */
#define SCALE_SCALAR_4V( DST, S, SRCB )     \
do {                        \
      (DST)[0] = S * (SRCB)[0];         \
      (DST)[1] = S * (SRCB)[1];         \
      (DST)[2] = S * (SRCB)[2];         \
      (DST)[3] = S * (SRCB)[3];         \
} while (0)

/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_4V( DST, S )      \
do {                        \
      (DST)[0] *= S;                \
      (DST)[1] *= S;                \
      (DST)[2] *= S;                \
      (DST)[3] *= S;                \
} while (0)

/** Assignment */
#define ASSIGN_4V( V, V0, V1, V2, V3 )      \
do {                        \
    V[0] = V0;                  \
    V[1] = V1;                  \
    V[2] = V2;                  \
    V[3] = V3;                  \
} while(0)

/*@}*/


/**********************************************************************/
/** \name 3-element vector operations*/
/*@{*/

/** Zero */
#define ZERO_3V( DST )  (DST)[0] = (DST)[1] = (DST)[2] = 0

/** Test for equality */
#define TEST_EQ_3V(a,b)  ((a)[0] == (b)[0] &&   \
              (a)[1] == (b)[1] &&   \
              (a)[2] == (b)[2])

/** Copy a 3-element vector */
#define COPY_3V( DST, SRC )         \
do {                        \
   (DST)[0] = (SRC)[0];             \
   (DST)[1] = (SRC)[1];             \
   (DST)[2] = (SRC)[2];             \
} while (0)

/** Copy a 3-element vector with cast */
#define COPY_3V_CAST( DST, SRC, CAST )      \
do {                        \
   (DST)[0] = (CAST)(SRC)[0];           \
   (DST)[1] = (CAST)(SRC)[1];           \
   (DST)[2] = (CAST)(SRC)[2];           \
} while (0)

/** Copy a 3-element float vector */
#define COPY_3FV( DST, SRC )            \
do {                        \
   const GLfloat *_tmp = (SRC);         \
   (DST)[0] = _tmp[0];              \
   (DST)[1] = _tmp[1];              \
   (DST)[2] = _tmp[2];              \
} while (0)

/** Subtraction */
#define SUB_3V( DST, SRCA, SRCB )       \
do {                        \
      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
      (DST)[2] = (SRCA)[2] - (SRCB)[2];     \
} while (0)

/** Addition */
#define ADD_3V( DST, SRCA, SRCB )       \
do {                        \
      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
      (DST)[2] = (SRCA)[2] + (SRCB)[2];     \
} while (0)

/** In-place scalar multiplication */
#define SCALE_3V( DST, SRCA, SRCB )     \
do {                        \
      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
      (DST)[2] = (SRCA)[2] * (SRCB)[2];     \
} while (0)

/** In-place element-wise multiplication */
#define SELF_SCALE_3V( DST, SRC )       \
do {                        \
      (DST)[0] *= (SRC)[0];         \
      (DST)[1] *= (SRC)[1];         \
      (DST)[2] *= (SRC)[2];         \
} while (0)

/** In-place addition */
#define ACC_3V( DST, SRC )          \
do {                        \
      (DST)[0] += (SRC)[0];         \
      (DST)[1] += (SRC)[1];         \
      (DST)[2] += (SRC)[2];         \
} while (0)

/** Element-wise multiplication and addition */
#define ACC_SCALE_3V( DST, SRCA, SRCB )     \
do {                        \
      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
      (DST)[2] += (SRCA)[2] * (SRCB)[2];    \
} while (0)

/** Scalar multiplication */
#define SCALE_SCALAR_3V( DST, S, SRCB )     \
do {                        \
      (DST)[0] = S * (SRCB)[0];         \
      (DST)[1] = S * (SRCB)[1];         \
      (DST)[2] = S * (SRCB)[2];         \
} while (0)

/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_3V( DST, S, SRCB ) \
do {                        \
      (DST)[0] += S * (SRCB)[0];        \
      (DST)[1] += S * (SRCB)[1];        \
      (DST)[2] += S * (SRCB)[2];        \
} while (0)

/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_3V( DST, S )      \
do {                        \
      (DST)[0] *= S;                \
      (DST)[1] *= S;                \
      (DST)[2] *= S;                \
} while (0)

/** In-place scalar addition */
#define ACC_SCALAR_3V( DST, S )         \
do {                        \
      (DST)[0] += S;                \
      (DST)[1] += S;                \
      (DST)[2] += S;                \
} while (0)

/** Assignment */
#define ASSIGN_3V( V, V0, V1, V2 )  \
do {                    \
    V[0] = V0;              \
    V[1] = V1;              \
    V[2] = V2;              \
} while(0)

/*@}*/


/**********************************************************************/
/** \name 2-element vector operations*/
/*@{*/

/** Zero */
#define ZERO_2V( DST )  (DST)[0] = (DST)[1] = 0

/** Copy a 2-element vector */
#define COPY_2V( DST, SRC )         \
do {                        \
   (DST)[0] = (SRC)[0];             \
   (DST)[1] = (SRC)[1];             \
} while (0)

/** Copy a 2-element vector with cast */
#define COPY_2V_CAST( DST, SRC, CAST )      \
do {                        \
   (DST)[0] = (CAST)(SRC)[0];           \
   (DST)[1] = (CAST)(SRC)[1];           \
} while (0)

/** Copy a 2-element float vector */
#define COPY_2FV( DST, SRC )            \
do {                        \
   const GLfloat *_tmp = (SRC);         \
   (DST)[0] = _tmp[0];              \
   (DST)[1] = _tmp[1];              \
} while (0)

/** Subtraction */
#define SUB_2V( DST, SRCA, SRCB )       \
do {                        \
      (DST)[0] = (SRCA)[0] - (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] - (SRCB)[1];     \
} while (0)

/** Addition */
#define ADD_2V( DST, SRCA, SRCB )       \
do {                        \
      (DST)[0] = (SRCA)[0] + (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] + (SRCB)[1];     \
} while (0)

/** In-place scalar multiplication */
#define SCALE_2V( DST, SRCA, SRCB )     \
do {                        \
      (DST)[0] = (SRCA)[0] * (SRCB)[0];     \
      (DST)[1] = (SRCA)[1] * (SRCB)[1];     \
} while (0)

/** In-place addition */
#define ACC_2V( DST, SRC )          \
do {                        \
      (DST)[0] += (SRC)[0];         \
      (DST)[1] += (SRC)[1];         \
} while (0)

/** Element-wise multiplication and addition */
#define ACC_SCALE_2V( DST, SRCA, SRCB )     \
do {                        \
      (DST)[0] += (SRCA)[0] * (SRCB)[0];    \
      (DST)[1] += (SRCA)[1] * (SRCB)[1];    \
} while (0)

/** Scalar multiplication */
#define SCALE_SCALAR_2V( DST, S, SRCB )     \
do {                        \
      (DST)[0] = S * (SRCB)[0];         \
      (DST)[1] = S * (SRCB)[1];         \
} while (0)

/** In-place scalar multiplication and addition */
#define ACC_SCALE_SCALAR_2V( DST, S, SRCB ) \
do {                        \
      (DST)[0] += S * (SRCB)[0];        \
      (DST)[1] += S * (SRCB)[1];        \
} while (0)

/** In-place scalar multiplication */
#define SELF_SCALE_SCALAR_2V( DST, S )      \
do {                        \
      (DST)[0] *= S;                \
      (DST)[1] *= S;                \
} while (0)

/** In-place scalar addition */
#define ACC_SCALAR_2V( DST, S )         \
do {                        \
      (DST)[0] += S;                \
      (DST)[1] += S;                \
} while (0)



/**
 * Linear interpolation
 *
 * \note \p OUT argument is evaluated twice!
 * \note Be wary of using *coord++ as an argument to any of these macros!
 */
#define LINTERP(T, OUT, IN) ((OUT) + (T) * ((IN) - (OUT)))

/* Can do better with integer math
 */
#define INTERP_UB( t, dstub, outub, inub )  \
do {                        \
   GLfloat inf = UBYTE_TO_FLOAT( inub );    \
   GLfloat outf = UBYTE_TO_FLOAT( outub );  \
   GLfloat dstf = LINTERP( t, outf, inf );  \
   UNCLAMPED_FLOAT_TO_UBYTE( dstub, dstf ); \
} while (0)

#define INTERP_CHAN( t, dstc, outc, inc )   \
do {                        \
   GLfloat inf = CHAN_TO_FLOAT( inc );      \
   GLfloat outf = CHAN_TO_FLOAT( outc );    \
   GLfloat dstf = LINTERP( t, outf, inf );  \
   UNCLAMPED_FLOAT_TO_CHAN( dstc, dstf );   \
} while (0)

#define INTERP_UI( t, dstui, outui, inui )  \
   dstui = (GLuint) (GLint) LINTERP( (t), (GLfloat) (outui), (GLfloat) (inui) )

#define INTERP_F( t, dstf, outf, inf )      \
   dstf = LINTERP( t, outf, inf )

#define INTERP_4F( t, dst, out, in )        \
do {                        \
   dst[0] = LINTERP( (t), (out)[0], (in)[0] );  \
   dst[1] = LINTERP( (t), (out)[1], (in)[1] );  \
   dst[2] = LINTERP( (t), (out)[2], (in)[2] );  \
   dst[3] = LINTERP( (t), (out)[3], (in)[3] );  \
} while (0)

#define INTERP_3F( t, dst, out, in )        \
do {                        \
   dst[0] = LINTERP( (t), (out)[0], (in)[0] );  \
   dst[1] = LINTERP( (t), (out)[1], (in)[1] );  \
   dst[2] = LINTERP( (t), (out)[2], (in)[2] );  \
} while (0)

#define INTERP_4CHAN( t, dst, out, in )         \
do {                            \
   INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
   INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
   INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
   INTERP_CHAN( (t), (dst)[3], (out)[3], (in)[3] ); \
} while (0)

#define INTERP_3CHAN( t, dst, out, in )         \
do {                            \
   INTERP_CHAN( (t), (dst)[0], (out)[0], (in)[0] ); \
   INTERP_CHAN( (t), (dst)[1], (out)[1], (in)[1] ); \
   INTERP_CHAN( (t), (dst)[2], (out)[2], (in)[2] ); \
} while (0)

#define INTERP_SZ( t, vec, to, out, in, sz )                \
do {                                    \
   switch (sz) {                            \
   case 4: vec[to][3] = LINTERP( (t), (vec)[out][3], (vec)[in][3] );    \
   case 3: vec[to][2] = LINTERP( (t), (vec)[out][2], (vec)[in][2] );    \
   case 2: vec[to][1] = LINTERP( (t), (vec)[out][1], (vec)[in][1] );    \
   case 1: vec[to][0] = LINTERP( (t), (vec)[out][0], (vec)[in][0] );    \
   }                                    \
} while(0)



/** Assign scalers to short vectors */
#define ASSIGN_2V( V, V0, V1 )  \
do {                \
    V[0] = V0;          \
    V[1] = V1;          \
} while(0)

/*@}*/



/** Clamp X to [MIN,MAX] */
#define CLAMP( X, MIN, MAX )  ( (X)<(MIN) ? (MIN) : ((X)>(MAX) ? (MAX) : (X)) )

/** Assign X to CLAMP(X, MIN, MAX) */
#define CLAMP_SELF(x, mn, mx)  \
   ( (x)<(mn) ? ((x) = (mn)) : ((x)>(mx) ? ((x)=(mx)) : (x)) )



/** Minimum of two values: */
#define MIN2( A, B )   ( (A)<(B) ? (A) : (B) )

/** Maximum of two values: */
#define MAX2( A, B )   ( (A)>(B) ? (A) : (B) )

/** Dot product of two 2-element vectors */
#define DOT2( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] )

/** Dot product of two 3-element vectors */
#define DOT3( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + (a)[2]*(b)[2] )

/** Dot product of two 4-element vectors */
#define DOT4( a, b )  ( (a)[0]*(b)[0] + (a)[1]*(b)[1] + \
            (a)[2]*(b)[2] + (a)[3]*(b)[3] )

/** Dot product of two 4-element vectors */
#define DOT4V(v,a,b,c,d) (v[0]*(a) + v[1]*(b) + v[2]*(c) + v[3]*(d))


/** Cross product of two 3-element vectors */
#define CROSS3(n, u, v)             \
do {                        \
   (n)[0] = (u)[1]*(v)[2] - (u)[2]*(v)[1];  \
   (n)[1] = (u)[2]*(v)[0] - (u)[0]*(v)[2];  \
   (n)[2] = (u)[0]*(v)[1] - (u)[1]*(v)[0];  \
} while (0)


/* Normalize a 3-element vector to unit length. */
#define NORMALIZE_3FV( V )          \
do {                        \
   GLfloat len = (GLfloat) LEN_SQUARED_3FV(V);  \
   if (len) {                   \
      len = INV_SQRTF(len);         \
      (V)[0] = (GLfloat) ((V)[0] * len);    \
      (V)[1] = (GLfloat) ((V)[1] * len);    \
      (V)[2] = (GLfloat) ((V)[2] * len);    \
   }                        \
} while(0)

#define LEN_3FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2]))
#define LEN_2FV( V ) (SQRTF((V)[0]*(V)[0]+(V)[1]*(V)[1]))

#define LEN_SQUARED_3FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1]+(V)[2]*(V)[2])
#define LEN_SQUARED_2FV( V ) ((V)[0]*(V)[0]+(V)[1]*(V)[1])


/*@}*/


#endif