diff options
Diffstat (limited to 'codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html')
| -rw-r--r-- | codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html | 95 | 
1 files changed, 95 insertions, 0 deletions
diff --git a/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html b/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html new file mode 100644 index 0000000..e49289e --- /dev/null +++ b/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html @@ -0,0 +1,95 @@ +<!doctype html> +<html> +  <head> +    <title>CodeMirror: sTeX mode</title> +    <link rel="stylesheet" href="../../lib/codemirror.css"> +    <script src="../../lib/codemirror.js"></script> +    <script src="stex.js"></script> +    <style>.CodeMirror {background: #f8f8f8;}</style> +    <link rel="stylesheet" href="../../doc/docs.css"> +  </head> +  <body> +    <h1>CodeMirror: sTeX mode</h1> +     <form><textarea id="code" name="code"> +\begin{module}[id=bbt-size] +\importmodule[balanced-binary-trees]{balanced-binary-trees} +\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality} + +\begin{frame} +  \frametitle{Size Lemma for Balanced Trees} +  \begin{itemize} +  \item +    \begin{assertion}[id=size-lemma,type=lemma]  +    Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}  +    of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set +     $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of +    \termref[cd=graphs-intro,name=node]{nodes} at  +    \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has +    \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$. +   \end{assertion} +  \item +    \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.} +      \begin{spfcases}{We have to consider two cases} +        \begin{spfcase}{$i=0$} +          \begin{spfstep}[display=flow] +            then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so +            $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$. +          \end{spfstep} +        \end{spfcase} +        \begin{spfcase}{$i>0$} +          \begin{spfstep}[display=flow] +           then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes  +           \begin{justification}[method=byIH](IH)\end{justification} +          \end{spfstep} +          \begin{spfstep} +           By the \begin{justification}[method=byDef]definition of a binary +              tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has +            two children that are at depth $i$. +          \end{spfstep} +          \begin{spfstep} +           As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain +            leaves. +          \end{spfstep} +          \begin{spfstep}[type=conclusion] +           Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$. +          \end{spfstep} +        \end{spfcase} +      \end{spfcases} +    \end{sproof} +  \item  +    \begin{assertion}[id=fbbt,type=corollary]	 +      A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes. +    \end{assertion} +  \item +      \begin{sproof}[for=fbbt,id=fbbt-pf]{} +        \begin{spfstep} +          Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree +        \end{spfstep} +        \begin{spfstep} +          Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$. +        \end{spfstep} +      \end{sproof} +    \end{itemize} +  \end{frame} +\begin{note} +  \begin{omtext}[type=conclusion,for=binary-tree] +    This shows that balanced binary trees grow in breadth very quickly, a consequence of +    this is that they are very shallow (and this compute very fast), which is the essence of +    the next result. +  \end{omtext} +\end{note} +\end{module} + +%%% Local Variables:  +%%% mode: LaTeX +%%% TeX-master: "all" +%%% End: \end{document} +</textarea></form> +    <script> +      var editor = CodeMirror.fromTextArea(document.getElementById("code"), {}); +    </script> + +    <p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p> + +  </body> +</html>  | 
