summaryrefslogtreecommitdiff
path: root/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html
diff options
context:
space:
mode:
Diffstat (limited to 'codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html')
-rw-r--r--codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html95
1 files changed, 95 insertions, 0 deletions
diff --git a/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html b/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html
new file mode 100644
index 0000000..e49289e
--- /dev/null
+++ b/codemirror_ui/lib/CodeMirror-2.3/mode/stex/index.html
@@ -0,0 +1,95 @@
+<!doctype html>
+<html>
+ <head>
+ <title>CodeMirror: sTeX mode</title>
+ <link rel="stylesheet" href="../../lib/codemirror.css">
+ <script src="../../lib/codemirror.js"></script>
+ <script src="stex.js"></script>
+ <style>.CodeMirror {background: #f8f8f8;}</style>
+ <link rel="stylesheet" href="../../doc/docs.css">
+ </head>
+ <body>
+ <h1>CodeMirror: sTeX mode</h1>
+ <form><textarea id="code" name="code">
+\begin{module}[id=bbt-size]
+\importmodule[balanced-binary-trees]{balanced-binary-trees}
+\importmodule[\KWARCslides{dmath/en/cardinality}]{cardinality}
+
+\begin{frame}
+ \frametitle{Size Lemma for Balanced Trees}
+ \begin{itemize}
+ \item
+ \begin{assertion}[id=size-lemma,type=lemma]
+ Let $G=\tup{V,E}$ be a \termref[cd=binary-trees]{balanced binary tree}
+ of \termref[cd=graph-depth,name=vertex-depth]{depth}$n>i$, then the set
+ $\defeq{\livar{V}i}{\setst{\inset{v}{V}}{\gdepth{v} = i}}$ of
+ \termref[cd=graphs-intro,name=node]{nodes} at
+ \termref[cd=graph-depth,name=vertex-depth]{depth} $i$ has
+ \termref[cd=cardinality,name=cardinality]{cardinality} $\power2i$.
+ \end{assertion}
+ \item
+ \begin{sproof}[id=size-lemma-pf,proofend=,for=size-lemma]{via induction over the depth $i$.}
+ \begin{spfcases}{We have to consider two cases}
+ \begin{spfcase}{$i=0$}
+ \begin{spfstep}[display=flow]
+ then $\livar{V}i=\set{\livar{v}r}$, where $\livar{v}r$ is the root, so
+ $\eq{\card{\livar{V}0},\card{\set{\livar{v}r}},1,\power20}$.
+ \end{spfstep}
+ \end{spfcase}
+ \begin{spfcase}{$i>0$}
+ \begin{spfstep}[display=flow]
+ then $\livar{V}{i-1}$ contains $\power2{i-1}$ vertexes
+ \begin{justification}[method=byIH](IH)\end{justification}
+ \end{spfstep}
+ \begin{spfstep}
+ By the \begin{justification}[method=byDef]definition of a binary
+ tree\end{justification}, each $\inset{v}{\livar{V}{i-1}}$ is a leaf or has
+ two children that are at depth $i$.
+ \end{spfstep}
+ \begin{spfstep}
+ As $G$ is \termref[cd=balanced-binary-trees,name=balanced-binary-tree]{balanced} and $\gdepth{G}=n>i$, $\livar{V}{i-1}$ cannot contain
+ leaves.
+ \end{spfstep}
+ \begin{spfstep}[type=conclusion]
+ Thus $\eq{\card{\livar{V}i},{\atimes[cdot]{2,\card{\livar{V}{i-1}}}},{\atimes[cdot]{2,\power2{i-1}}},\power2i}$.
+ \end{spfstep}
+ \end{spfcase}
+ \end{spfcases}
+ \end{sproof}
+ \item
+ \begin{assertion}[id=fbbt,type=corollary]
+ A fully balanced tree of depth $d$ has $\power2{d+1}-1$ nodes.
+ \end{assertion}
+ \item
+ \begin{sproof}[for=fbbt,id=fbbt-pf]{}
+ \begin{spfstep}
+ Let $\defeq{G}{\tup{V,E}}$ be a fully balanced tree
+ \end{spfstep}
+ \begin{spfstep}
+ Then $\card{V}=\Sumfromto{i}1d{\power2i}= \power2{d+1}-1$.
+ \end{spfstep}
+ \end{sproof}
+ \end{itemize}
+ \end{frame}
+\begin{note}
+ \begin{omtext}[type=conclusion,for=binary-tree]
+ This shows that balanced binary trees grow in breadth very quickly, a consequence of
+ this is that they are very shallow (and this compute very fast), which is the essence of
+ the next result.
+ \end{omtext}
+\end{note}
+\end{module}
+
+%%% Local Variables:
+%%% mode: LaTeX
+%%% TeX-master: "all"
+%%% End: \end{document}
+</textarea></form>
+ <script>
+ var editor = CodeMirror.fromTextArea(document.getElementById("code"), {});
+ </script>
+
+ <p><strong>MIME types defined:</strong> <code>text/x-stex</code>.</p>
+
+ </body>
+</html>